Nano Tungsten Trioxide in Lithium Ion Battery

nano tungsten trioxide photo

As one of the recent hot topics, cobalt-free batteries can simply be considered as an upgraded version of the current commercial ternary lithium batteries. Because of their higher energy density and lower production costs, they are popular among many battery manufacturers. So, as a typical transition metal N-type semiconductor material, how is tungsten trioxide used in cobalt-free lithium ion battery?

Read more: Nano Tungsten Trioxide in Lithium Ion Battery

Tuning Electronic Structure of Tungsten Oxide for Hydrogen Electrolyte Reaction

Structure of tungsten oxide nanoblocks image

Researchers at the Shanghai Institute of Microsystems and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) have demonstrated that doping tungsten oxide (WO3) catalysts with appropriate cations can change the interfacial structure, surface chemical state, and bandgap values, thus improving the performance of the basic hydrogen electrolyte reaction (HER). In the experiments, cation (Ni, Co, and Fe) doped WO3 catalysts were synthesized on nickel foam. The Co-doped catalysts (Co WO) exhibited remarkable HER activity.

Read more: Tuning Electronic Structure of Tungsten Oxide for Hydrogen Electrolyte Reaction

Tungsten Oxide Polymorphs and Applications

Tungsten oxide materials for optoelectronic applications image

Considerable interest in tungsten oxide polymorphs (WO3-x) nanomaterials has been generated due to their abundance in nature, easy availability, high stability, non-recombination, and chemical diversity, and many advances have been made from traditional catalysts and electronics to emerging artificial intelligence. A recent study from Qingdao University presents the latest progress of WO3-x polycrystals and their multifunctional applications.

Read more: Tungsten Oxide Polymorphs and Applications

Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials

Tungsten oxide-based nanomaterials in building electrochemical energy devices image

Tungsten oxide-based nanomaterials have attracted a lot of attention for their use in building various electrochemical energy devices. In particular, electrochromic devices and optical change devices have been intensively investigated in terms of energy conservation.

Read more: Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials

Oxidation Protection of Tungsten Alloys in Nuclear Fusion Applications

Interaction of plasma with irradiated tungsten and tungsten alloys image

A recent study conducted by the Anhui University of Technology has proposed new measures for the oxidation protection of tungsten alloys in nuclear fusion applications. As a plasma guide material (PFM), tungsten is persistently used in nuclear fusion reactors. However, it has poor oxidation resistance at high temperatures. When a reactor de-cooling accident occurs, tungsten is rapidly oxidized and volatilized due to air entering the vacuum chamber, which may cause a catastrophic nuclear leakage accident.

Read more: Oxidation Protection of Tungsten Alloys in Nuclear Fusion Applications

 

WeChat