Enhanced Intrinsic Photovoltaic Effect in Tungsten Disulfide Devices

The photovoltaic response obtained with WS2-based devices of different crystal symmetry image

The bulk photovoltaic effect (BPVE) found in tungsten disulfide devices could further enhance energy conversion rates. The BPVE in conventional p-n junctions - where p-type materials (with excess holes) are adjacent to n-type materials (with excess electrons) - generates current through the light-induced generation and separation of electron-hole pairs. This BPVE is particularly important in energy applications, and its efficiency is now approaching its theoretical limit.

Read more: Enhanced Intrinsic Photovoltaic Effect in Tungsten Disulfide Devices

Titanium Oxide Tungstate Nanotubes Improve Fuel Cell Performance

Tensile strength of SPEEK and composite membranes image

Titanium oxide tungstate nanotubes could improve fuel cell performance. The chemical oxidative stability of the tungstate-functionalized sulfonated poly ether ether ketone (SPEEK) membranes is one of the key requirements for the durability and performance of the fuel cells, which was estimated using Fenton's reagent method.

Read more: Titanium Oxide Tungstate Nanotubes Improve Fuel Cell Performance

Tungstic Acid Titanium Oxide Nanotubes for Proton Exchange Membrane Fuel Cell

FTIR spectra of composite membranes and SPEEK image

Among various two-dimensional materials, titanium oxide nanotubes (TiO2 nanotubes) are stable and environmentally friendly, and their electronic, optical, and dielectric properties can be tuned by surface modification. Researchers used tungstic acid covalently bonded to titanium oxide nanotubes (W-TNT) for the first time as an ion-exchange filler for the fabrication of proton exchange composite membranes. The tungstate group (H2WO4) contains exchangeable protons similar to the sulfonic acid group (SO3H) and can also be used as an ion exchanger.

Read more: Tungstic Acid Titanium Oxide Nanotubes for Proton Exchange Membrane Fuel Cell

Tungstate Titanium Oxide Nanotubes Improve Ion Exchange in Fuel Cells

XRD patterns of composite membranes and SPEEK image

Ion exchange capacity is a vital property of ionic membranes, and this property is enhanced with the addition of ion-exchange materials. The IEC value of pure SPEEK membranes is 1.9 meq g-1 due to the contribution of sulfonate group (SO3H). increasing the content of tungstate titanium oxide nanotubes (W-TNT) in sulfonated poly ether ether ketone (SPEEK) membranes could improve the fuel cell ion-exchange capacity.

Read more: Tungstate Titanium Oxide Nanotubes Improve Ion Exchange in Fuel Cells

Preparation of Tungstic Acid Functionalized Titanium Oxide Nanotubes

FTIR spectra of TNT-Cl-TNT-di-Na-W and W-TNT image

Titanium oxide nanotubes (TNT) were synthesized by hydrothermal method and covalently grafted with tungstic acid (ion exchange group) on their surface. The synthesized tungstate functionalized TNT (W-TNT) was characterized by SEM, TEM, and XRD analysis, and the successful grafting of the tungstate group was confirmed by FTIR and solid-state NMR techniques.

Read more: Preparation of Tungstic Acid Functionalized Titanium Oxide Nanotubes

 

WeChat