溅射镀膜法制备氧化钨薄膜4/4

磁控镀膜示意图磁控溅射法能有效地解决上述的问题,磁控溅射是溅射技术中的新成就之一。前面所介绍的三种溅射法中,都存在淀积速率低的缺点,尤其是直流溅射,在放电过程中只有少部分的气体分子被电离。为了在低气压环境下进行高速溅射,必须增大被电离气体的比例。磁控溅射法中引入正交电磁场,使被电离气体的比例增加,提高溅射速率。磁控溅射法一般是在直流溅射或者射频溅射基础进行改造,在靶阴极内侧安装磁铁,磁铁磁场的方向垂直于阴极磁场方向。磁控溅射法的原理为以磁铁磁场来改变电子运动的方向,延长和束缚电子运动轨迹,提高被电离气体的比例,充分利用电子的能量,使数量相同的离子去轰击靶材料时,靶材料的溅射原子的量更多,即溅射效率更高,而且因为电子受正交电磁场的束缚,能量要耗尽时才能沉积在基片上。磁控溅射法相比其他三种溅射法具有沉积速率快,基片工作温度小两大特点。制备氧化钨薄膜时,在反应溅射镀膜法的基础上结合磁控溅射法,可以大大提高氧化钨薄膜的制备效率。
 
上述的四种为最常见的溅射方法,还有一些适用于特殊场合比较不常见的溅射方法,如离子束溅射、三极溅射、偏压溅射等。而这四种溅射方式也经常被结合起来一起使用,如直流(射频)反应溅射,直流(射频)磁控溅射,直流(射频)磁控反应溅射等,综合了各自的优点和特长。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜3/4

溅射镀膜法可分为直流溅射、射频溅射、反应溅射以及磁控溅射四种比较常见的方式。
 
直流溅射法,是最为简单的溅射方法,预镀材料为阳极、基片为阴极,通入氩气后在两极之间加入高压直流电,氩离子在高压电场作用下获得动能轰击靶材料,靶材产生溅射,沉积与基片表面性能薄膜。直流溅射溅射镀膜原理图法的结构简单而且容易获得大面积薄膜,但是直流溅射法所选的靶材料只能为金属或者低电阻率的非金属,而且基片的工作问题过高,薄膜的沉积时间长。
 
射频溅射法,在直流溅射的基础上将直流高压电改为交流电压,与直流溅射法相比射频溅射法具有一个突出的优点,可以溅射包括绝缘体、半导体、导体在内的任何材料。
 
反应溅射,在直流溅射与射频溅射的基础上,通入反应气体,如氧气、水、氨气等混合一定比例的氩气,溅射出的原子与反应气体发生化学反应生成化合物,沉积氧化物、碳化钨、硫化物等各种化合物薄膜,氧化钨薄膜的制备就是采用氧气作为反应气体、钨为靶材。以上三种溅射方式虽然理论上已经能制备出多种种类的薄膜如金属、非金属、导体与非导体、化合物薄膜,但是这三种方法仍存在制备时基片的温度过高,薄膜沉积的时间长和辐射损伤大等缺点。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜1/4

氧化钨薄膜具电致变色、气致变色、热至变色、光致变色光催化剂性能,因此应用于多领域之中,前景十分宽阔。氧化钨薄膜的前景十分可观,制备方式也受到许都学者的关注,目前比较常用的制备氧化钨薄膜的方式有,溅射镀膜法、蒸发法、化学气相沉积法、溶胶-凝胶法,不同方式制备出的氧化钨薄膜在性能上会有所区别,制备方式的工艺难易程度也各不相同。

溅射工艺过程示意图

 
溅射镀膜法制备出的氧化钨薄膜均匀性较差、沉积速率较慢,容易把控氧化钨薄膜中的化学成分、对衬底的附着力较好,同时溅射镀膜法也因为容易控制工艺参数才工业上被广泛应用;蒸发法制备的氧化钨薄膜纯度较高、沉积速度快,早期受到较多的重视;化学气相沉积法具有低生产成本与高生产效率的特点,而且制备出的氧化钨薄膜能均匀地覆盖在复杂的表面;溶胶-凝胶法设备简单、操作简单、并且能制备出大面积氧化钨薄膜,由于无法长时间的保存使其该方法无法被应用于工业上大规模生产。溅射镀膜法相对来说比较适用于工业上大规模生产,本文主要介绍一下与溅射镀膜法相关的一些知识。
 
溅射镀膜法的原理。将靶材料与基片放于电场中,高能粒子通过电场加速后撞击在靶材上,高能粒子可以为电子、离子或者中性粒子,但一般会选择离子,因为离子在电场中容易获得动能,离子轰击到靶材料表面后经过一系列能量交换,原子或者分子从靶材料表面飞出,这个过程称为溅射,溅射出来的大部分为原子,可能有小部分为原子团。溅射出来的原子或者原子团沉淀到基片的表面,在其表面镀上一层薄膜,所以整个过程称为溅射镀膜法。
微信:
微博:

溅射镀膜法制备氧化钨薄膜2/4

采用溅射镀膜法制备氧化钨薄膜时,在设备中通入氩和氧的混合气体,靶材料为金属钨,氩离子在电场的作用下,获得动能去轰击金属钨,靶材料表面溅射出金属钨原子,钨原子与氧气发生反应变为氧化钨并且沉积在基片表面,形成氧化钨薄膜。

溅射镀膜示意图

 
溅射的机理。根据动能转移理论认为离子必须要拥有一定的动能,即一定的速度去碰撞靶材料,才能使其表面溅射出原子。碰撞时,离子将动能传递给被碰撞的原子,只有当动能的能量大于靶材原子之间的结合能,原子才能从靶材表面溅射出来。简单的理解这就好比生活中拿着石镐去敲击石头,只有当你力气达到一定的程度才能从石头表面敲下小石子,石镐即为离子,石头为靶材、小石子为溅射出的原子。经过理论分析得出以下几点:(1)原子溅射率会随离子动能增加而提高,但当动能增加到一定的程度时,溅射率反而会减少;(2)当离子动能低某一个数值时,靶材表面将不再发生溅射;(3)发生溅射是具有方向性的,溅射方向会根据离子的入射方向改变而变化;(4)如果采用质量小的电子来替代离子轰击靶材料,即使具有极高的动能,也不会发生溅射现象。
微信:
微博:

 

 

掺杂氧化钨薄膜光学性能2/2

采用磁控溅射的方式掺杂Ni所得到的WOx-Ni薄膜也为非晶体,Ni都是以NiO氧化物的形式存在。在磁控反应溅射工艺下,Ni的掺杂能显著提高氧化钨薄膜的电致变色性能。同时掺杂Ni可以大幅度降低氧化钨薄膜缺陷,提高循环的稳定性,经过高达600次着的褪色循环之后,氧化钨薄膜着色态的透过率高达70%,光学动态调节能力降低为10%,已经基本失去电致变色的能力,而通过均匀方式掺杂了4%Ni的WOx-Ni薄膜着色态的透过率变为45%,光学动态的调节能力变为35%,是纯氧化钨薄膜的3倍多。最好的掺杂Ni方式是采用均匀掺杂的方式,掺量为4~7.7%,这样才能有效地提高WOx-Ni薄膜电致变色的性能。
 
采用磁控溅射的方式掺杂V得到WOx-V薄膜能改善氧化钨薄膜的电致变色性能,而且能提高氧化钨薄膜记忆存储的能力,均匀掺杂6%的V再放置24小时后氧化钨薄膜的着色态透过率从原始的25.5%下降为38.5%,并且氧化钨薄膜的透过率下降了50%达到75%。
 
从一般情况来说,掺杂不同的物质,会使对着色态氧化钨薄膜的透过率造成很大的影响,通过实验数据得出:,掺杂Ti、N、V这三种元素时,只有Ti会出现降低薄膜光学性能的状况,而掺杂N、V这两种元素时能从不同程度上提高薄膜的光学性能,单从提高光学性能来说V的效果是最为显著。但不论使用哪种掺杂物来提高氧化钨薄膜的性能,都必须遵守一条规则:掺杂量并不是越多越好,而是存在一个最佳值。
微信:
微博:
 

微信公众号

タングステン知識

タングステン知識

 

絶縁ガラス用Cs 0.32 WO 3粒子

絶縁ガラス用Cs 0.32 WO 3粒子