无刚性支撑的等静压受力分析

下图为无刚性支撑的等静压受力图,如图的情况下,可以分为截面为圆形和矩形的两种模型。
无刚性支撑等静压受力分析图片
1、圆形模型
等静压压坯各处所受的压力均相等,压制开始时,粉末颗粒外层首先受压,粉末颗粒的运动从表面开始,沿表面法向指向粉末的内部。
粉末颗粒的填充是先从外层开始,逐步朝内部推进。尤其是在致密化的开始阶段,充填最先发生在塑性模(本例为橡皮模)处。压坯心部密度要小于边缘密度,随着压制的继续进行,密度差逐渐减少。
在一般的模压过程,颗粒只有沿压力方向的位移,即在此方向上被压缩;但对于球状(或圆柱状)制品等静压过程中,颗粒除了作径向位移外还在做周向位移,即有径向压缩,又有周向压缩。由于有周向压缩,在同样径向位移量的情况下,致密化过程更为迅速。
由于上述特点,对于球状(或圆柱状)制品,其坯体表层较心部优先致密化。表面致密的、封闭的薄壳层,阻止压力传至心部,形成所谓的“薄壳拱顶”结构。
薄壳拱顶图片
有鉴于此,凡球状或圆柱状的等静压制品,其表层密度与心部密度会存在较大差异,这种密度差严重时甚至不能被烧结消除。
 
2、矩形模型
通过对球状模型的分析,可知当制品的截面为矩形时,边角角度将被压缩,形成尖角,但不会产生如圆形制品那样的“薄壳拱顶”结构,所以密度差要小于圆形截面制品,但由于内摩擦的存在,密度差依然存在。
 
微博
微信

有刚性支撑的等静压受力分析

等静压压制根据有无刚性支撑可分为有刚性支撑的等静压压制和无刚性支撑的等静压压制,刚性支撑常用的模具是刚性模芯。
 
在实际冷等静压制品中,由于会有孔等存在,往往采用有刚性模芯支撑的模具设计,如下图所示。
等静压受力分析图片
此时粉末收到的压力主要来自侧面的塑性模(此图以橡胶模为例)P2,两端的橡皮塞虽然也收到液体传压介质的作用P1,但由于粉末与刚性模芯表面有摩擦,故P1只起到阻止粉末侧向运动的作用,而对粉末的轴向位移作用较小。此时粉末在厚度方向上的受力有:橡皮模对粉末的压力P2、刚性模芯对粉末的压力P3、粉末的内摩擦力F,当处于受力平衡时(压缩速度较小时,可看做准平衡状态),平衡方程为:
P2-P3-F=O
即有P2=P3+F
当粉末层较薄(小于20mm)时,内摩擦力F远远小于P2和P3,此时就近似有
P2=P3
而粉末层较厚时,有
P3=P2-F
有上面两个力学模型可知,粉体在靠近刚体部分(即较厚部位)所受到的压力要小于靠近橡胶软模的部位(即较薄部位),这就导致沿厚度方向压坯密度分布的不均。实际的等静压实验也表明,粉层较厚的制品的平均密度要低于厚度较薄的制品。
 
微博
微信

冷等静压的包套和模具

冷等静压可大致分为两个大的工艺过程:模具的制造和成形。在冷等静压技术中,包套和模具的合理设计,是保证压坯质量和提高包套使用寿命的关键,也是节约原材料、降低成本的重要因素。
无论是湿袋法还是干袋法,模具都是由塑性模、刚性模、端口密封装置和支撑装置四个基本构件组成。
一、塑性模
塑性模也称为塑料软模,塑性模在冷等静压成型中,不仅起型模作用,而且起传递压力使粉料达到成型致密的作用。
二、刚性模
刚性模的模芯、型模等是由金属材料制成的.刚性模的尺寸形状在成型过程中保持不变。
三、端口密封装置
依据压坯的形状和尺寸
不同.可设计成不同的形式。如成型圆柱形的压坯的端口装置,
常见的密封方式有:橡胶塞密封;橡胶塞加包套密封;包套盖加弹性环密封;弹性包套盖自密封;包套盖刚性环捆扎密
封;弹性包套盖刚性自紧加捆扎密封等。对于冷等静压工艺,成形模具的端口密封装置具有十分重要的作用。封口密封装置需要具备塑性和刚性这两个矛盾的特性,既要起到密封作用,又要方便装取料,当然也要考虑使用寿命、成本等。
四、支撑装置(支撑桶)
由于包套薄,对包套内的粉末进行除氧时,很难保持装料后包套固定的形状,需要在包套外附设一种专门的支撑装置。这种装置,可分为固定型和随机型。
包套组合模图片
干袋包套组合模示意图
1-上橡胶端塞
2-塑性模
3-液体传压介质
4-支撑装置
5-粉末
6-刚性模芯
7-下橡胶端塞
 
微博
微信

 

冷等静压的基本原理

冷等静压是硬质合金粉末的一种成形方式,它是根据帕斯卡原理发展而来。粉末成形过程与压制成形类似,但由于压力传递方式的不同,导致冷等静压压坯的密度分布与成形压力比一般模压更具优势。
 
粉末成形过程
1、初期粉末孔隙率较大,成形压力较小,粉末颗粒以迁移和重堆积为主
2、中期,随着孔隙率的下降,粉末之间的挤压加剧,粉末局部流动和碎化。
3、后期,压力到达最大,达到致密化阶段。
 
冷等静压中的压力与密度分布。
等静压压坯的密度分布沿纵断面是均匀的。但是沿压坯同一横向断面上,由于粉末颗粒间的内摩擦的影响,压坯的密度从外往内逐步降低。下图为等静压下不同直径压坯的密度分布。
冷等静压径向密度分布图片
冷等静压的压制曲线在一般模压曲线的上方,也就是说冷等静压可以在较小的压力下使压坯获得较高的密度。这是由于等静压时粉末与模壁没有相对运动,不会被这部分的摩擦力所损耗。这相比与模压压制有着较大的优势。在模压压制中,无论是哪种压制,除了压坯密度分布较难控制外,粉末与模壁的摩擦而导致的压力损耗是无法避免的,即使使用润滑条件也是如此。下图为铜粉在等静压和模压下的密度对比。
等静压和模压的密度曲线图片
 
微博
微信

 

等静压传压介质

1利用帕斯卡原理对粉末进行等静压压制时,其成形有两个要点:
a、被压缩液体或气体的任意点静压应力相等(即等静压)
b、液体或气体对内部粉末的压力是通过液/固或气/固界面进行的,如果固体坯中的气孔与液体或气体相连,将无法压缩气孔,因此需要使用致密包套包裹固体,才能对固体进行压制。
等静压传压介质
等静压传压介质有三类:液体、固体和气体。
按传压特性来看,液体和气体可以无损耗地传递压力,这种特性成为准静力特性,具备这种特性的传压介质称之为准静力介质。反之,不具备这种特性的传压介质称之为非准静力介质。固体介质就是非准静力介质。
 
1)气体传压介质
一般采用Ar、He、N2等气体。
    气体容易被压缩,在高压下甚至出现液化。所以常温下,气体传压介质应用于不大于100MPa场合,或用于热等静压中。下图为常温下Ar密度与压力的关系。
Ar压力与密度的关系图片
2)液体传压介质
常用的液体传压介质有甘油、水、矿物油、黄油等。液体也具有可压缩特性,当液体所受到的压力低于50MPa时,不会凝固。在高压下,液体甚至出现凝固现象。当水的压力超过400MPa时或者矿物油的压力大约超600MPa时,会出现凝固。因此在液体等静压时压力通常低于300MPa。如果要采用更高的压力,熔融盐、玻璃熔体、各种金属熔液也可作为传压介质,特别是在热等静压中,最大压力可达1000MPa。
液体压缩特性图片
3)固体传压介质
当等静压的压力超过400MPa时,一般使用弹性或塑性较好的固体,如橡胶、塑料软膜、滑石粉、氮化硼粉、Cr2O3粉、硬脂酸锌粉等作为传压介质;如果所需压力继续增大,到1500MPa时,可用铁粉、镍粉、滑石粉等作传压介质。
 
微博
微信
 

微信公众号

タングステン知識

タングステン知識

 

絶縁ガラス用Cs 0.32 WO 3粒子

絶縁ガラス用Cs 0.32 WO 3粒子