Graphene-Based Transistor Seen as Candidate for Post-CMOS Technology
- Details
- Category: Tungsten's News
- Published on Wednesday, 23 January 2013 11:13
A new graphene-based transistor in which electrons travel both over a barrier and under it (by tunneling) has exhibited one of the highest performances of graphene-based transistors to date.
The combination of the two types of transport enables the transistor to achieve a large difference between its on and off states, giving it a high on/off ratio, which has so far been difficult to achieve in graphene-based transistors. With this advantage, in addition to its ability to operate on transparent and flexible substrates, the new transistor could play a role in post-CMOS devices that are expected to be able to compute at much faster speeds than today's devices.
The researchers from the University of Manchester in the UK, who designed the new graphene-based transistor, have published their study on the device in a recent issue of Nature Nanotechnology.
As the researchers explain in their study, other graphene-based transistors have previously been demonstrated, many of which have a sandwich structure with atom-thick sheets of graphene forming the outer layers and a different ultrathin material forming the middle layer. This middle layer can consist of many possible materials. In the current study, the researchers used two-dimensional tungsten disulphide (WS2) as the middle layer, which served as an atomically thin barrier between the two layers of graphene.
The biggest advantage of using WS2 compared to most other barrier materials is that WS2's chemical properties allow electrons to cross either by going over the barrier, as in thermionic transport, or under it, as in tunneling. In the off state, very few electrons can cross the barrier by either transport method, but they can cross by one or both methods in the on state.
Switching between the two states involves changing the transistor's gate voltage. A negative gate voltage creates the off state, since it increases the tunneling barrier height so that few electrons can cross the barrier. A positive gate voltage switches the transistor to the on state by reducing the tunneling barrier height and—if the temperature is high enough—allowing over-barrier thermionic current as well.
Tungsten Manufacturer & Supplier: Chinatungsten Online - http://www.chinatungsten.com
Tel.: 86 592 5129696; Fax: 86 592 5129797
Email: sales@chinatungsten.com
Tungsten News & Tungsten Prices, 3G Version: http://3g.chinatungsten.com
Tungsten News & Tungsten Prices, WML Version: http://m.chinatungsten.com