Taiwanese military conducting annual Han Kuang military exercises

 

The Taiwanese armed forces are conducting the annual Han Kuang series of military exercises, in an effort to validate their joint combat readiness in the wake of increasing tensions with China.

Scheduled to conclude on 19 April, the two-stage exercise involves participation from approximately 7,682 personnel from all three military services, and also features a live-fire anti-landing drill on the island of Penghu, Taiwan.

 

Featuring the public debut of the recently delivered Thunderbolt-2000 multiple rocket launcher system (MLRS), the drill aims to evaluate the military's ability to counter possible amphibious landing assaults and defend an offshore island against an attack by mainland forces.

Eighty one rockets are scheduled to be fired from nine truck-mounted launchers during the drill, which marks the first time live ammunition has been included in the exercises since 2008.

The Taiwanese Navy is participating with a Chengkung-class frigate and Kuang Hua VI fast-attack boats, while the air force has deployed its F-16A/B Fighting Falcon, F-CK-1 Ching-kuo indigenous defence fighter (IDF), as well as the F-5E fighter for the exercise.

“Eighty one rockets are scheduled to be fired from nine truck-mounted launchers during the drill."

Other weapons being used include AH-1W Super Cobra attack helicopters, OH-58D Kiowa Warrior reconnaissance helicopters of the Army Aviation Task Force, in addition to 120mm mortars, M60A3 main battle tanks, and 155mm self-propelled howitzers.

Taiwan Ministry of National Defence (MND) officials were cited by Taiwan Today as saying that the drill also features anti-airborne operations and amphibious landings, as well as mechanised infantry and support manoeuvres, and live-fire manoeuvres.

The exercise represents first part of the Han Kuang drills, while the second part featuring computer-assisted war games to test and strengthen the country's information and electronic warfare capabilities is scheduled to take place from 16 to 20 July.


 

New Processing Method Makes Precious Matels Cheaper

Aluminum was once more costly than gold. Napoleon III, emperor of France, reserved cutlery made from it for his most favoured guests, and the Washington monument, in America’s capital, was capped with it not because the builders were cheapskates but because they wanted to show off. How times change. And in aluminium’s case they changed because, in the late 1880s, Charles Hall and Paul Héroult worked out how to separate the stuff from its oxide using electricity rather than chemical reducing agents. Now, the founders of Metalysis, a small British firm, hope to do much the same with tantalum, titanium and a host of other recherché and expensive metallic elements including neodymium, tungsten and vanadium.

 
The effect could be profound. Tantalum is an ingredient of the best electronic capacitors. At the moment it is so expensive ($500-2,000 a kilogram) that it is worth using only in things where size and weight matter a lot, such as mobile phones. Drop that price and it could be deployed more widely. Neodymium is used in the magnets of motors in electric cars. Vanadium and tungsten give strength to steel, but at great expense. And the strength, lightness, high melting point and ability to resist corrosion of titanium make it an ideal material for building aircraft parts, supercars and medical implants—but it can cost 50 times as much as steel. Guppy Dhariwal, Metalysis’s boss, thinks however that the company can make titanium powder (the product of its new process) for less than a tenth of such powder’s current price.
 
At the moment, titanium is usually produced by the Kroll process, which William Kroll, a metallurgist from Luxembourg, developed in the 1940s. The Kroll process starts with titanium oxide, which is derived from ores like rutile and is cheaply available (artists use it as a brilliant-white pigment). First, the oxide is reacted with chlorine, to get rid of the oxygen. The resulting chloride is then reacted with liquid magnesium or sodium, to get rid of the chlorine. This creates a porous material, titanium sponge, which is crushed and melted in a vacuum furnace to yield titanium ingots. Making tantalum is similarly onerous. The oxide (which comes from an ore called coltan) is converted to a fluoride using hydrofluoric acid, and the fluoride is then reduced with liquid sodium. Both processes are similar to the way aluminium was prepared before the days of Hall and Héroult.
 
Their insight was that electricity, which was starting to be generated in industrial quantities in the 1880s, could be used instead of chemicals to split the metal from the oxygen in aluminium oxide. And that is what Metalysis is doing in its new tantalum factory, and what it hopes to do for titanium and the rest.
 
The difference between its process and that of Hall and Héroult (and why electrolysis has not previously been used to make metals such as tantalum and titanium) is that the Hall-Héroult method requires both input oxide and output metal to be in liquid form. That demands heat. But aluminium has a fairly low melting point and its oxide can be dissolved in a substance called cryolite that also has a low melting point, so the amount of heat needed is manageable. Titanium and tantalum are not so obliging. The Metalysis trick is to do the electrolysis on powdered oxides directly, without melting them.
 
This was shown to be possible in 1997 when researchers at Cambridge University found that immersing small samples of certain oxides in baths of molten salt and passing a current through them transformed the material directly into metal. Metalysis was set up in 2001 to commercialise the idea and in 2005 the firm moved to Wath-upon-Dearne, a village near Sheffield, in South Yorkshire, in order to tap the local engineering skills that once made the county (home of silver plate, stainless steel and the Bessemer converter) the California of metallurgy. These skills turned a technique that could produce a few grams of metal in a laboratory into a process that operates on an industrial scale.
 
 
Tungsten Manufacturer & Supplier: Chinatungsten Online - http://www.chinatungsten.com
Tel.: 86 592 5129696; Fax: 86 592 5129797
Email: sales@chinatungsten.com
Tungsten News & Tungsten Prices, 3G Version: http://3g.chinatungsten.com
Tungsten News & Tungsten Prices, WML Version: http://m.chinatungsten.com

 

 

WeChat

Tungsten Metal

Tungsten Metal Price

Tungsten Alloy

Tungsten Alloy Price

Tungsten Carbide

Tungsten Carbide Price

Tungsten Powder

Tungsten Powder Price

Tungsten Copper

Tungsten Copper Price

Tungsten Oxide

Tungsten Oxide Price