WO3 Nanoparticles for Photocatalytic Degradation of Dyes

picture of tungsten trioxide

Oxide nanomaterials are used to develop advanced photovoltaic materials, photocatalysts, and smart devices. Among metal oxides, tungsten oxide (WO3) is an n-type semiconductor with a small bandgap of 2.6 eV and unique thermal, optical, physical, chemical, and electrical properties. These properties have led to many applications in chemical and selective catalysis, sensors, fuel cells, color change, and pollutant adsorption. WO3 is considered a suitable candidate for the photodegradation of organic pollutants in the visible light region.

Read more: WO3 Nanoparticles for Photocatalytic Degradation of Dyes

Synthesis of Tungsten Trioxide Nanowires and Doping with Metals

SEM image of WO3 nanowires

Tungsten trioxide (WO3) is an n-type semiconductor oxide that possesses a large bandgap in the range of 2.6–3.0 eV and has the potential for a variety of applications such as electrochemical devices, photovoltaic devices, photocatalytic devices, electrochromic devices, dye-sensitized solar cells, optical devices, field-emission displays, and gas sensors. Meanwhile, with the development of one-dimensional nanostructures, dimensionality and size of the materials have also been regarded as critical factors that may bring some novel and unexpected properties.

Read more: Synthesis of Tungsten Trioxide Nanowires and Doping with Metals

Au-Modified Tungsten Trioxide and Its Gas Sensing to NOx

HRTEM image of Au-WO3

Semiconductor metal oxides (SMOs) are highly potent gas sensors for gaseous detection in terms of screening of air eminence, low expenditure on synthesis and sensing property that can be modified. The semiconductor metal oxide gas sensor is considered the most capable gas-sensing device due to its high sensitivity, fast response, low cost, and small size.

Read more: Au-Modified Tungsten Trioxide and Its Gas Sensing to NOx

Synthesis of Spherical Macroporous WO3 Particles

picture of 3D tomography image of spherical macroporous WO3 particles

Tungsten trioxide (WO3) has been extensively studied due to its affinity for visible light, chemical inertness, thermal stability, and harmlessness. These excellent properties make this material useful for solar-related applications such as photocatalysts, solar cells, water splitting, and hydrogen generation.

Read more: Synthesis of Spherical Macroporous WO3 Particles

Growth of Tungsten Trioxide on Carbon Nanowalls

SEM image of WO3-CNWs structure
Carbon nanowalls (CNWs) have a wide range of applications such as supercapacitors, Sensors and, etc due to its structure, electrical, optical and mechanical properties, CNWs are also named as vertical graphene nanosheets. They have a three-dimensional structure and represent a kind of maze (labyrinth-like) graphene nanosheets with vertical orientation on the surface, which can be freely Perpendicular to the substrate. Unlike carbon nanotubes, one of the characteristics of CNW is that their synthesis does not require a catalyst. Therefore, they can be synthesized on substrates of various materials, such as metals (stainless steel, Pt, Ti, Cu, Ni, Mo, Zr, Hf, Nb, W) semiconductors (Si) and even insulators (Al2O3, quartz). Tungsten oxide (WO3) is an important n-type semiconductor and it is a promising material to combine with carbon nanowalls.

Read more: Growth of Tungsten Trioxide on Carbon Nanowalls

 

WeChat