三氧化钨电致变色与气敏性应用2/2

三氧化钨作为电致变色显示材料(EC display)。早期EC显示的电子钟和电子表,其使用寿命与循环次数为主要的缺陷,通过采用三氧化钨作为电致变色显示材料可制备出循环次数可达到5百万次,刷新时间为一秒以内的显示器件,虽然氧化钨作为电致变色显示材料存在不能快速刷新的问题,但是三氧化钨变色材料在仍在EC显示上获得应用。
 
气敏传感器
三氧化钨作为一种金属氧化钨半导体气敏材料而受广泛应用,氮氧化物与硫化氢气体是主要的大气污染物,三氧化钨在探测这些大气污染物呈现出良好的气敏特性。气敏材料之所以能实现对气体的检测,主要的原理为被探测的气体会与三氧化钨表面发生接触时,会在三氧化钨表面发生吸附与脱吸附反应,材料的电阻率发生改变,通过检测材料的电阻值就能实现对被探测气体的检测。
如果增大气敏材料与被探测气体的有效接触面积不仅能得到更高的灵敏度,而且更大的接触面积具有更好的散热,能减少工作温度的变化,避免工作温度变化过大影响气敏材料的灵敏度。通过减少气敏材料的晶粒尺寸,使晶粒纳米化是增大气敏材料的有效工作面积的主要方式之一,而纳米级的三氧化钨具有非常高的灵敏度,甚至在低温情况下也具有较好的灵敏度。同时研究者们也相继发现了三氧化钨对多种气体,如臭氧与有机物挥发性气体都具有良好的气敏特性。
微信:
微博:

 

三氧化钨电致变色与气敏性应用1/2

三氧化钨电致变色应用三氧化钨是一种金属氧化物半导体材料,也是一种特殊的功能材料,经研究发现其因为其晶体结构的多样性使三氧化钨具有电致变色、气致变色、光致变色、光学催化剂、气敏材料等性能。本文将结合一些实例来说明三氧化钨电致变色与气敏性在生活中的应用。
三氧化钨电致变色应用
三氧化钨的电致变色性能,可在航天领域中作为航天器的热涂层材料。三氧化钨电致变色器件可通过改变外加电场的电压方向改变离子的抽出与注入情况,器件中电致变色层的颜色也会相应发生改变,从而改变器件对光的反射率(透射率)。航天器中如果采用三氧化钨电致变色器件作为热涂层材料,能通过改变外加电场,控制热涂层对红外光线的反射率,从而控制装置内的温度。这种技术依靠的是运用材料自身的特性来调节涂层对红外光线的反射率的大小,不需要很复发的电气控制或者机械传统部分,能使航天器的控温系统具有轻质量、低能耗、可靠性高等特点。对于航天器上部分热敏感器件可以采用直接覆盖电致变色膜的方式来对其热量实现更好的控制。三氧化钨电致变色能通过对外加电场的改变来调节其对红外光的反射率,同样的道理,三氧化钨还能制成红外隐身涂层材料,实现飞机的红外隐身。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜3/4

溅射镀膜法可分为直流溅射、射频溅射、反应溅射以及磁控溅射四种比较常见的方式。
 
直流溅射法,是最为简单的溅射方法,预镀材料为阳极、基片为阴极,通入氩气后在两极之间加入高压直流电,氩离子在高压电场作用下获得动能轰击靶材料,靶材产生溅射,沉积与基片表面性能薄膜。直流溅射溅射镀膜原理图法的结构简单而且容易获得大面积薄膜,但是直流溅射法所选的靶材料只能为金属或者低电阻率的非金属,而且基片的工作问题过高,薄膜的沉积时间长。
 
射频溅射法,在直流溅射的基础上将直流高压电改为交流电压,与直流溅射法相比射频溅射法具有一个突出的优点,可以溅射包括绝缘体、半导体、导体在内的任何材料。
 
反应溅射,在直流溅射与射频溅射的基础上,通入反应气体,如氧气、水、氨气等混合一定比例的氩气,溅射出的原子与反应气体发生化学反应生成化合物,沉积氧化物、碳化钨、硫化物等各种化合物薄膜,氧化钨薄膜的制备就是采用氧气作为反应气体、钨为靶材。以上三种溅射方式虽然理论上已经能制备出多种种类的薄膜如金属、非金属、导体与非导体、化合物薄膜,但是这三种方法仍存在制备时基片的温度过高,薄膜沉积的时间长和辐射损伤大等缺点。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜4/4

磁控镀膜示意图磁控溅射法能有效地解决上述的问题,磁控溅射是溅射技术中的新成就之一。前面所介绍的三种溅射法中,都存在淀积速率低的缺点,尤其是直流溅射,在放电过程中只有少部分的气体分子被电离。为了在低气压环境下进行高速溅射,必须增大被电离气体的比例。磁控溅射法中引入正交电磁场,使被电离气体的比例增加,提高溅射速率。磁控溅射法一般是在直流溅射或者射频溅射基础进行改造,在靶阴极内侧安装磁铁,磁铁磁场的方向垂直于阴极磁场方向。磁控溅射法的原理为以磁铁磁场来改变电子运动的方向,延长和束缚电子运动轨迹,提高被电离气体的比例,充分利用电子的能量,使数量相同的离子去轰击靶材料时,靶材料的溅射原子的量更多,即溅射效率更高,而且因为电子受正交电磁场的束缚,能量要耗尽时才能沉积在基片上。磁控溅射法相比其他三种溅射法具有沉积速率快,基片工作温度小两大特点。制备氧化钨薄膜时,在反应溅射镀膜法的基础上结合磁控溅射法,可以大大提高氧化钨薄膜的制备效率。
 
上述的四种为最常见的溅射方法,还有一些适用于特殊场合比较不常见的溅射方法,如离子束溅射、三极溅射、偏压溅射等。而这四种溅射方式也经常被结合起来一起使用,如直流(射频)反应溅射,直流(射频)磁控溅射,直流(射频)磁控反应溅射等,综合了各自的优点和特长。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜2/4

采用溅射镀膜法制备氧化钨薄膜时,在设备中通入氩和氧的混合气体,靶材料为金属钨,氩离子在电场的作用下,获得动能去轰击金属钨,靶材料表面溅射出金属钨原子,钨原子与氧气发生反应变为氧化钨并且沉积在基片表面,形成氧化钨薄膜。

溅射镀膜示意图

 
溅射的机理。根据动能转移理论认为离子必须要拥有一定的动能,即一定的速度去碰撞靶材料,才能使其表面溅射出原子。碰撞时,离子将动能传递给被碰撞的原子,只有当动能的能量大于靶材原子之间的结合能,原子才能从靶材表面溅射出来。简单的理解这就好比生活中拿着石镐去敲击石头,只有当你力气达到一定的程度才能从石头表面敲下小石子,石镐即为离子,石头为靶材、小石子为溅射出的原子。经过理论分析得出以下几点:(1)原子溅射率会随离子动能增加而提高,但当动能增加到一定的程度时,溅射率反而会减少;(2)当离子动能低某一个数值时,靶材表面将不再发生溅射;(3)发生溅射是具有方向性的,溅射方向会根据离子的入射方向改变而变化;(4)如果采用质量小的电子来替代离子轰击靶材料,即使具有极高的动能,也不会发生溅射现象。
微信:
微博:

 

 

 

WeChat