I-P Co-Doped WO3 for Photocatalytic Degradation of Dyeing Wastewater

SEM image of I-P co-doped WO3

Nearly 20% of water pollution is caused by the leather and textile industries. Textile wastewater contains a lot of organic pollutants, including dyes that are widely used in industry. At the same time, printing and dyeing wastewater has also caused water problems and health problems.

Read more: I-P Co-Doped WO3 for Photocatalytic Degradation of Dyeing Wastewater

Tungsten Trioxide Doped TiO2 Photocatalysts for Degradation of Diethyl Phthalate

picture of diethyl phthalate

Diethyl phthalate (DEP) is an odorless, colorless, oily liquid. It is used to make plastics, pesticides, cosmetics, and aspirin, as well as toothbrushes, auto parts, toys, tools and food packaging. At the same time, DEP has a negative impact on human health and causes environmental problems.

Read more: Tungsten Trioxide Doped TiO2 Photocatalysts for Degradation of Diethyl Phthalate

Pt/WO3 Films for NO2 Gas Sensing

SEM image of Pt/WO3

Combustion equipment and automobiles are the major sources of NOx gas including nitrogen dioxide (NO2). These gases have negative effects on the human health and can also cause acid rain. Therefore, effective adsorption materials should be used to sense and detect these gases in the atmosphere.

Read more: Pt/WO3 Films for NO2 Gas Sensing

WO3-TiO2 Photocatalysts with Enhanced Photocatalytic Properties

SEM image of WO3-TiO2 photocatalyst

In the past decade, the application of semiconductor powder as a photocatalytic degradation of organic pollutants in water has received widespread attention. Titanium dioxide (TiO2) suppresses amazing photocatalytic properties, including high activity, chemical stability, and low cost. However, the photocatalytic activity of TiO2 (with a band gap of 3.2 eV, excited by photons with a wavelength of less than 387 nm) is still limited by UV wavelength irradiation, so the photocatalytic process cannot effectively occur during sunlight irradiation. 4% of the total solar spectrum radiation is in the ultraviolet region.

Read more: WO3-TiO2 Photocatalysts with Enhanced Photocatalytic Properties

WO3 Nanoparticles for Photocatalytic Degradation of Dyes

picture of tungsten trioxide

Oxide nanomaterials are used to develop advanced photovoltaic materials, photocatalysts, and smart devices. Among metal oxides, tungsten oxide (WO3) is an n-type semiconductor with a small bandgap of 2.6 eV and unique thermal, optical, physical, chemical, and electrical properties. These properties have led to many applications in chemical and selective catalysis, sensors, fuel cells, color change, and pollutant adsorption. WO3 is considered a suitable candidate for the photodegradation of organic pollutants in the visible light region.

Read more: WO3 Nanoparticles for Photocatalytic Degradation of Dyes

 

WeChat