WO3提升Pt系催化剂的性能

燃料电池是绿色能源科技,而制约其大量应用的重要因素就在于它的关键材料——催化剂贵金属用量大、活性不高、稳定性不能满足应用要求等,从成本上制约了它的发展。质子交换膜燃料电池因其高效、安全和环保等优点,备受关注。三氧化钨和碳化钨在燃料电池环境里比较稳定,与金属催化剂有协同效应,是碳载体的理想替代品。

三氧化钨和钨青铜结构
 
研究表明,氧化钨具有理想的质子传导能力是因为WO3水合物的生成,这是对应用于燃料电池催化剂载体很有吸引力的。三氧化钨已经被证明在电化学氧化条件下比Vulcan XC-72R在热力学上更稳定。鉴于三氧化钨比表面积过小而限制金属催化剂的分散,随着制备能力的提升,微球、介孔和纳米三氧化钨较传统的氧化钨具有更高的稳定性和比表面积,因而可以表现出更佳的性能。
 
WO3能增强Pt对甲醇氧化催化作用,主要是因为WO3形成了钨青铜,进而促进了甲醇的脱氢反应,并且亲氧性的氧化钨有助于去除吸附在催化剂上的甲醇氧化中间产物。研究发现,载铂的三氧化钨催化剂的活性比商用Pt-Ru/C的高。相较于Pt /C催化剂,20%氧化钨含量的Pt/WO3对甲醇的氧化催化活性和电化学稳定性明显较高。另外,Gui等人通过在碳上吸附和分解磷钨酸制备Pt-WO3/C催化剂,在CO溶出实验中发现,该种催化剂显示出较好的CO氧化能力,这说明Pt-WO3/C的抗CO毒化能力比Pt/C的强。
微信:
微博:

 

不同WO3掺杂量对甲醇氧化的影响

全固体氧化物燃料电池发电系统直接甲醇燃料电池(Direct Methanol Fuel Cell,DMFC)属于质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC),它直接使用甲醇水溶液或蒸汽甲醇为燃料供给来源,而不需通过甲醇、汽油及天然气的重整制氢以供发电。直接甲醇燃料电池 (DMFC) 具备低温快速启动、燃料洁净环保以及电池结构简单等特性,而得到广泛研究。
 
三氧化钨是少数几种易于实现量子尺寸效应的氧化物半导体之一,已经被广泛应用于燃料电池、电化学传感器和光电器件等领域。研究者对催化剂中加入WO3的情况进行研究,其结果表明,Pt-WO3和Pt-Ru-WO3对H2/CO及甲醇的催化活性均有明显提升。其反应方程式为:

WO3+xPt-H→HxWO3+xPt

HxWO3→xH++xe-+WO3

通过以上两个反应的连续进行,Pt粒子上的活性位点得到释放,进一步促进了氢的解离吸附。
 
随着合成和制备条件的不同,三氧化钨在外观上表现出不同的结构和形貌,而这些特征将显著影响其物理和化学性能。已有研究表明,三氧化钨的结晶形貌对电极的催化性能有很大的影响,但不同晶体结构三氧化钨对电极的催化性能会产生什么影响呢?研究通过对水热法合成2种不同晶体结构的WO3纳米粉体,并制成氧化钨复合电极,观察对甲醇催化性能的影响。实验表明,Pt-WO3/C催化剂对甲醇氧化的电催化活性优于Pt/C(其中Pt质量分数为20%),Pt-WO3(p)/C的催化性能优于Pt-WO3(b)/C【括号中的p指p型,b指b型】。三氧化钨质量分数为20%时,Pt-WO3/C催化剂具有最好的催化效果。
微信:
微博:

 

抑制剂对硬质合金球齿性能的影响

理论上说,烧结体的晶粒度越小,材料的硬度也越高;而材料的断裂强度会随着硬度的增大而增大。为了提高硬质合金球齿WC-Co的硬度和强度,在烧结过程中必须通过优化烧结工艺以及添加适当的晶粒生长抑制剂来抑制晶粒的长大。硬质合金粉末烧结过程中常用的抑制剂有TaC、MoC、Cr3C2、VC、NbC等,其可以作为单一添加剂也可按一定比例组成复合型抑制剂。此外,还有研究人员将难熔金属碳化物加入到富Co基体中,并将所形成的固溶体作为抑制剂。其能显著降低基体熔点,在液相Co中形成稳定的金属/非金属原子团,而该原子团的存在会阻碍W、C原子从一个晶粒向另一个相邻晶粒的液相迁移,从而进一步降低WC晶粒的长大速率。

稀土元素也可作为晶粒长大抑制剂,其也能在烧结过程中抑制晶粒长大并提高硬质合金球齿的各项性能。与常用的抑制剂一样,稀土元素也有许多,如Y、La、Nd、Pr、Ce,其添加形式也可以是稀土金属、氧化物以及混合稀土。稀土元素的主要作用在于:1.性质较为活泼,对O、S、N、C等元素亲和力较强,因而硬质合金球齿中的这些杂质元素形成稀土化合物质点并分布在晶界上。这也就有效地阻止了液态Co中的扩散溶解和WC相之间的晶界迁移,抑制了WC晶粒的不均匀长大;2.净化晶界以及去除杂质,稀土元素与杂质元素结合形成球形化合物,对粘结相起到弥散强化作用。在以上两种机制下,对硬质合金球齿的硬度、抗弯强度有显著的强化作用。与此同时,稀土元素还能有效降低硬质合金球齿的烧结温度,较好解决了控制晶粒长大和烧结致密化之间的矛盾。

硬质合金球齿

微信:
微博:

 

真空电镀用钨加热子的重要工序——蒸发镀膜

钨加热子化学镀膜最早用于在光学元件表面制备保护膜。随后,1817年,Fraunhofe在德国用浓硫酸或硝酸侵蚀玻璃,偶然第一次获得减反射膜,1835年以前有人用化学湿选法淀积了银镜膜,它们是最先在世界上制备的光学薄膜。后来,人们在化学溶液和蒸汽中镀制各种光学薄膜。50年代,除大块窗玻璃增透膜的一些应用外,化学溶液镀膜法逐步被真空镀膜取代。 真空蒸发和溅射这两种真空物理镀膜工艺,是迄今工业能够制备光学薄膜的两种最主要的工艺。1935年,有人研制出真空蒸发淀积的单层减反射膜。但它的最先应用是1945年以后镀制在眼镜片上。真空电镀用钨加热子在蒸发镀膜的过程中需要注意以下几点。

1.在发热钨丝上缠上铝片。如上次电镀中熔铝呈球状包覆于钨丝上则不可再用,需拆出换过钨丝。
2.将上好笼架的啤件(通过小车)推入真空室内,保持电极紧密接触,嵌入离合器定位牢固应能旋转。
3.顺序用机械泵,罗茨泵及扩散泵抽气,当真空度指针达到5×10-4TORR时可开始蒸镀操作。
4.蒸镀过程:钨丝升温到650℃,铝熔融在钨丝上,继续升高到近1000℃,熔化铝被蒸发逸出铝原子以直线运动凝结在它相碰的表面上,真空室内被镀制品不断在旋转 (跟笼架)使被镀表面镀上均匀膜层。
5.平均镀膜生产周期约30分钟左右。
6.设备的详细操作使用参见附页数据。

微信:
微博:

 

钨铜/纯铜焊接触头

因其具有优良的导电导热性能,铜与铜合金在电机、电器等领域有着较为广泛的运用。由于用单一的纯铜(紫铜)所制备的电触头硬度较低,且在受热的情况下容易发生软化(铜熔点较低),尤其是在一些高压、高载荷开关触头无法确保工作的稳定进行。因此,为了保证电器触头工作的可靠性以及耐久性,研究人员发现在纯铜电极上镀上一层钨铜合金,能有效改善触头的各项综合性能,如密度、强度、抗烧蚀性、抗热震性、散热性以及使用寿命都得到了不同程度的改善。

如今工业上常用的连接铜与铜合金的方法有很多,如真空钎焊、真空扩散焊、真空电子束焊、电阻焊、惰性气体保护焊以及摩擦焊等等。这里我们主要介绍真空钎焊和真空扩散焊两种工艺。真空钎焊一般在空气炉和真空炉中进行,将钎料和钎剂按顺序夹在钨铜和纯铜之间,加热至780℃,保温20min,冷却出炉;而扩散焊在真空扩散炉中进行,需要注意的是对真空度、焊接压力、焊接温度以及保温时间的控制。从显微组织上看,真空扩散焊的触头,纯铜与钨铜结合度良好,界面过渡相对平滑。而通过钎焊的钎料与基材结合良好,而液态钎料与钨铜合金之间的作用没有纯铜的强烈。从电阻率上看,真空钎焊触头的电阻率最低,接近于钨铜母材的电阻率,若在空气中进行钎焊,触头容易产生氧化、杂质以及气孔等焊接缺陷,均匀性也难以得到有效保证,因而电阻率较高。

钨铜/纯铜焊接触头

微信:
微博:

 

钨铜管小孔加工技术存在的问题

钨铜管是利用高纯度且具有高硬度、高强度以及优良耐磨性的W粉以及高纯紫铜粉的可塑性、优良导电导热性的优点,经过静压成型、高温烧结以及熔渗铜的工艺得到的高性能复合材料。其断弧性能良好,导电导热性能优良,高温下不发生软化,金属移除率较高,加工模具表面光洁度较高,使用寿命较长,在高压放电管以及一些耐高温部件中有着较为广泛的运用。但是,也正是因为钨铜合金耐磨、耐高温的特点使得其较难加工,再加上其壁厚通常较薄,强度和刚度都较弱,容易发生破碎。

传统的小孔加工方法是先对内孔进行精镗,使之达到表面粗糙度的要求;再用标准铰刀(六齿)进行进给。但是采用这种方法加工后的工件尺寸和形状精度难以达到图纸要求,且一些工件发生了胀裂,废品率高达50%-60%。这是由于:
1.车削内孔时车刀刀杆较细,刚性较差,容易使得刀发生振动难以达到铰削所需要的尺寸,加工难度大且进度缓慢;
2.铰孔在半封闭空间中进行,切屑较难排出,容易发生堆积并擦伤内孔表面,有些细微的切屑粘在刀刃上还会与孔壁摩擦增加了表面粗糙度;较大颗粒的切屑甚至会严重烧蚀加工表面;
3.切屑堵塞在刀槽中增加了切削温度和切削力,也加速了刀具的磨损;
4.铰削余量较大,铰削力过大或切屑的堆积容易造成铰削力突变,当超过材料的强度极限时就发生了工件的胀裂。

钨铜管

微信:
微博:

 

燃料电池阴极复合催化剂——焦绿石型三氧化钨

黄色氧化钨研究发现,在贵金属中添加过渡金属氧化物有利于提高电催化活性。氧化钨与贵金属铂可以形成协同催化效应,并且在酸性环境下的性能表现相当稳定,以三氧化钨作为载体材料的复合催化剂被广泛研究。焦绿石型三氧化钨具有多维孔道的层状结构,并拥有三维孔道,这一结构有利于离子的快速迁移和交换,提高了离子导电率;并且,同时增强了它的吸附性能,一定的离子可以嵌入到层状结构中形成插层复合催化材料。
 
水热合成法合成焦绿石型三氧化钨粉体,以焦绿石型三氧化钨和碳粉作为载体,制备Pt/WO3-C复合催化剂,作为质子交换膜燃料电池阴极催化材料。研究表明:
1. 水热合成初始溶液pH值在1.0~4.0范围内,随着pH值的减小,所合成的焦绿石型三氧化钨的粒径逐渐变小;
2. Pt/WO3的催化性能相对于Pt/C较差,由于三氧化钨呈半导体特性,电子导电性较差,影响了其电催化性能;
3. Pt/WO3-C的催化活性显著的提高,表明单纯的机械混合不能使得催化剂充分均匀地担载在载体上,通过液相直接担载可以获得分散度较高的复合催化剂,从而提高催化性能;
4. 均匀分散于碳粉中的焦绿石型三氧化钨,其表面担载铂后形成催化活性点,焦绿石型三氧化钨的层状孔道结构有利于离子的脱嵌,在催化反应过程中具有接受和给予质子能力,从而可以引起提高反应速度,与铂形成协同催化的作用,进而提高复合催化剂的催化活性,最终提高燃料电池的能量转化效率。
微信:
微博:

 

WO3-Pt/C燃料电池催化剂的抗硫中毒特性

三氧化钨是一种n型半导体功能材料,因为具有多种可变的价态、优良的阳离子交换性、分子吸附性、氧化还原性和电磁性而广泛应用于各种催化氧化反应、分离、电化学、光催化等多个领域。除氢氟酸以外,WO3不溶于其它酸,能完全适应燃料电池的高压、高湿度和低pH值工作环境并稳定存在。另外,WO3的【WO6】八面体结构形成复杂的网络,可以容纳各种不同的阳离子或水分子,形成一维隧道结构、二维层状结构和三维网状结构等晶型结构。

WPC催化剂抗硫中毒
 
氧化钨表面具有良好的亲水性,容易被部分还原形成表面含羟基的+5和+6价的混合氧化物,由此带来的表面氧空位和由水解产生的羟基均可以提高电子与表面吸附物质的氧化反应,即提高了氧化钨与Pt之间界面电子的迁移速率。从而使吸附在催化剂表面的有害物质SOx加速氧化并从催化剂表面脱附,减轻SOx的毒化影响,并促进燃料电池的性能恢复。另外,WO3能够接受从铂催化剂传递来的活性氢离子,与之结合形成钨青铜,使得铂的活性区再度释放用于吸附其它的氢,进而显著提高铂催化剂的催化效率。另外,WO3作为催化剂载体对直接甲酸燃料电池的性能也有较明显的提高。最优质量配比的WO3-Pt/C催化剂,不仅能使二氧化硫的毒化影响达到最低、性能恢复速率达到最大,而且能够获得较好的催化作用和稳定性。
微信:
微博:

 

硬质合金刀具涂层技术

随着现代机械加工业朝着高精度、高速切削、研磨、低成本以及环保等方向发展,对与硬质合金刀具性能也提出了更高的要求。从理论上说,决定切削加工效率、精度和表面质量的主要因素是刀具的硬度和强度,而他们之间又往往存在着难以平衡的关系。一般硬度高的材料,强度相对较低,提高强度也往往是以降低硬度为代价的。因此,为了有效调和这一对矛盾并进一步提高硬质合金刀具的耐磨性,相关研究人员采用了硬质合金涂层技术。在原本的基体上沉积一层硬质合金涂层,从而形成一个化学屏障和热屏障,减小了刀具的磨损,涂层较高的摩擦系数可以显著提高刀具的使用寿命。

通常硬质合金刀具涂层的要求主要包括以下几点:
1.高硬度以及优良耐磨性;
2.涂层薄膜对基体的韧性影响不大;
3.降低刀具与工件的摩擦系数;
4.使用寿命较长。
如今使用较多的硬质合金涂层技术包括化学气相沉积法(CVD)、物理气相沉积法(PVD)、中温化学气相沉积法(MTVD)、等离子化学气相沉积法(PCVD)以及离子辅助物理气相沉积等。其中化学气相沉积是使用最为广泛的一种。其原理是在高温下涂层材料的混合气体在硬质合金表面相互作用,使混合气体中的一些成分分解,并在硬质合金表面形成金属或化合物的涂层。需要注意的是该沉积反应必须在一定的能量激活条件下进行。另外,高温化学气相沉积涂层优点有:
1.涂层材料的来源相对容易;
2.可以实现TiC、TiN、TiCN、TiB、Al2O3等单层及多元复合涂层;
3.涂层与基体间结合强度高,耐磨性良好。

硬质合金刀具

微信:
微博:

 

盾构硬质合金

随着科学技术带动城市的快速发展,对于交通运输设施,如隧道、地铁、桥梁等基础设施工程的需求量越来越大,要求也越来越高。硬质合金具有高硬度、高强度以及优良的耐磨耐蚀性,因而在这些工程施工中具有较为广泛的运用。而盾构硬质合金是硬质合金产品中的一类,其一般是装配在盾构机上进行地下掘进。由于地质成分不明确,且盾构机是一种推进力、剪切力都较大的大功率设备,传统的硬质合金在这样高强度的推力和剪切力的混合作用下,很容易产生破碎和折断。目前较为常见的两种盾构硬质合金产品主要是盾构硬质合金齿以及盾构硬质合金刀片。

盾构硬质合金齿与普通硬质合金球齿相似,但是其作用范围更广,作用力可均匀分散在整个齿面上,不易发生磨损和断裂。而盾构机硬质合金刀是由硬质合金刀片与钢制刀体组成,主要承受地下土质、水压等持续变化所带来的挤压、冲击、刮削等作用。有研究表明,在盾构硬质合金中对性能影响最大的两个因素,其一是钴Co的含量,另一个是晶粒度的大小。根据实验数据分析,Co含量存在一个最佳范围,低于该范围则相应地盾构硬质合金的韧性下降,容易出现破碎;而Co含量高于该范围则盾构合金的强度下降且容易出现不耐磨的现象。晶粒度大小的影响也与之类似,晶粒度太小则盾构硬质合金容易出现破裂;晶粒度太大则容易出现不耐磨的现象。

盾构硬质合金

微信:
微博:

 

 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。

金属钨制品

金属钨制品图片

高比重钨合金

高比重钨合金图片

硬质合金

硬质合金图片

钨粉/碳化钨粉

钨粉图片

钨铜合金

钨铜合金图片

钨化学品/氧化钨

氧化钨图片