梯度硬質合金基體表層碳含量的控制
- 詳細內容
- 分類:鎢的知識
- 發佈於:2013-08-13, 週二 09:42
- 點擊數:876
硬質合金中碳含量控制是一個非常關鍵的問題。當合金中缺碳時,在合金中會形成脆性η相,η相的出現將大幅降低硬質合金的斷裂韌度和強度。目前已知的η相主要有M6C型的Co3W3C、Co2W4C;M12C型的Co6W6CF、Co6W6C104F;Co3W9C4,除此之外,還有Co2W6C、Co2W8C3和Co3W10C4等。當合金中碳過量時,合金中的石墨相也將對合金的性能產生不利影響。採用化學氣相沉積方法在梯度合金基體表面塗敷TiC高硬耐磨材料,在1000℃時,發生如下反應:
TiCl4+CH4+H2TiC+4HCl+H2
化學反應過程中生成的TiC沉積在基體的表面,然而實驗發現,在化學氣相沉積TiC塗層過程中,伴隨著如下反應的進行:
TiCl4+C+2H2TiC+4HCl
梯度硬質合金塗層技術——物理氣相沉積(PVD)技術
- 詳細內容
- 分類:鎢的知識
- 發佈於:2013-08-13, 週二 09:33
- 點擊數:1171
物理氣相沉積主要為蒸發鍍膜、離子鍍膜和濺射鍍膜3大類。真空蒸發鍍膜是發展較早,應用也最廣的一種PVD塗層技術,目前仍佔有世界40%的市場,但用途範圍正在縮小。這種技術是在真空條件下採用電阻、電子束等加熱鍍膜材料,使其熔化蒸發再沉積在合金基體表面形成鍍膜。
離子鍍膜是在真空條件下通入Ar氣等,利用輝光放電使氣體和鍍膜材料部分離化,並使離子轟擊靶打出靶上的材料離子,使其沉積在合金基體的表面。離子鍍膜在切削工具超硬材料鍍膜中應用較為成功的技術是多弧離子鍍膜。
濺射鍍膜是在真空室中,利用荷能離子轟擊靶材表面,通過離子的動量傳遞轟擊出靶材中的原子及其它粒子,並使其沉積在合金基體表面形成鍍膜的技術。濺射鍍膜能實現大面積快速沉積。
PVD技術出現於20世紀70年代末,由於其工藝處理溫度可控制在500℃以下,因此可作為最終處理工藝用於高速鋼類工具的塗層。由於採用PVD技術可大幅度提高高速鋼工具的切削性能,所以該技術自80年代以來得到了迅速推廣。
梯度硬質合金基體製備
- 詳細內容
- 分類:鎢的知識
- 發佈於:2013-08-13, 週二 09:19
- 點擊數:761
要獲得性能良好的塗層梯度硬質合金產品,塗層基體的製備是一個非常關鍵的問題。塗層必須與合適的基體結合才能達到預期的性能。具有梯度結構的表面富鈷合金基體則使塗層切削刃強度更高,提高了塗層抗裂紋擴展能力,提高了基體與塗層的結合強度以及刀具的抗彎強度。硬質合金刀片劃痕強度實驗表明:基體成分相同情況下,梯度結構塗層刀片的基體與塗層結合強度比無梯度結構塗層刀片的基體與塗層結合強度大。硬質合金刀片的切削實驗也表明:基體和塗層成分相同的情況下,有梯度結構塗層硬質合金刀片的切削性能比無梯度結構塗層硬質合金刀片的切削性能優良。
梯度硬質合金基體可通過分段燒結工藝製備。第一階段預燒結,將試樣在氮氣保護下升溫(升溫速度為5℃/min),升溫到400℃時保溫1h脫蠟;溫度到1380℃時,保溫1h使合金緻密化後,冷卻至室溫。第二階段梯度燒結,在真空狀態下,將預燒結後試樣由室溫升至燒結溫度並保溫2h後隨爐冷卻至室溫。
梯度硬質合金塗層技術——化學氣相沉積(CVD)技術
- 詳細內容
- 分類:鎢的知識
- 發佈於:2013-08-13, 週二 09:27
- 點擊數:832
為改善硬質合金的切削加工性能,工業發達國家80%以上的硬質合金刀具都經過表面塗覆處理。幾十年來,國內外相繼開發了雙塗層、三塗層以及多塗層的複合刀片,有的塗層數甚至達到幾十層、上百層的水準。硬質合金塗層技術通常可分為化學氣相沉積(CVD)技術和物理氣相沉積(PVD)技術兩大類。
化學氣相沉積(CVD)是硬質合金領域的一個重要技術突破,它借助一種或幾種含有塗層元素的化合物或單質氣體在放置有基材的反應室裏的氣相作用或在基材表面的化學反應而形成塗層,常見的CVD技術是以含C/N的有機物乙氰(CH3CN)作為主要反應氣體,與TiCl4、H2、N2在700~900℃下產生分解、化學反應生成TiCN。塗層有效地提高了硬質合金製品表面硬度和耐磨性,延長硬質合金製品的使用壽命,減少損耗,提高機加工效率。
20世紀60年代以來,CVD技術被廣泛應用於硬質合金可轉位刀具的表面處理。80年代中後期,美國已有85%硬質合金工具採用了表面塗層處理,其中CVD塗層占到99%,到90年代中期,CVD塗層硬質合金刀片在塗層硬質合金刀具中仍占80%以上。
硬質合金刀具材料的研究
- 詳細內容
- 分類:鎢的知識
- 發佈於:2013-08-13, 週二 09:06
- 點擊數:841
由於硬質合金刀具材料的耐磨性和強韌性不易兼顧,因此使用者只能根據具體加工物件和加工條件在眾多硬質合金牌號中選擇適用的刀具材料,這給硬質合金刀具的選用和管理帶來諸多不便。為進一步改善硬質合金刀具材料的綜合切削性能,對硬質合金刀具材料的研究研究熱點主要包括以下幾個方面:
(1)細化晶粒
通過細化硬質相晶粒度、增大硬質相晶間表面積、增強晶粒間結合力,可使硬質合金刀具材料的強度和耐磨性均得到提高。當WC晶粒尺寸減小到亞微米以下時,材料的硬度、韌性、強度、耐磨性等均可提高,達到完全緻密化所需溫度也可降低。普通硬質合金晶粒度為3~5μm,細晶粒硬質合金晶粒度為l~1.5μm(微米級),超細晶粒硬質合金晶粒度可達0.5μm以下(亞微米、納米級)。超細晶粒硬質合金與成分相同的普通硬質合金相比,硬度可提高2HRA以上,抗彎強度可提高600~800MPa。
常用的晶粒細化工藝方法主要有物理氣相沉積法、化學氣相沉積法、等離子體沉積法、機械合金化法等。等徑側向擠壓法(ECAE)是一種很有發展前途的晶粒細化工藝方法。該方法是將粉體置於模具中,並沿某一與擠壓方向不同(也不相反)的方向擠出,且擠壓時的橫截面積不變。經過ECAE工藝加工的粉體晶粒可明顯細化。