当甲醛遇上三氧化钨光催化剂

光触媒去除甲醛甲醛(https://zh.wikipedia.org/wiki/%E7%94%B2%E9%86%9B)是一种无色而对感官具有刺激性作用的气体,它的主要危害表现为对皮肤粘膜的刺激作用,当室内甲醛达到一定浓度时,人就有不适感。大于0.08 mg/m³的甲醛浓度可引起眼部不适、咽喉不适或疼痛、胸闷、气喘、皮炎等,另外它还具有致突变性、致癌性等不利影响。2011年美国国家毒理学计划描述甲醛为“已知人类致癌物”。

不仅如此,装修板材、涂料、家具以及汽车配件及其装饰物等携带的甲醛有害气体还可引起各种慢性呼吸道疾病。在国外,人们对甲醛的含量控制十分的严格。近日,浙江台州出口木制品首次因甲醛和挥发性物质超标遭到国外退运。如果它们能把建材或含甲醛的基材表面涂喷三氧化钨光触媒,就应该不至于出现这样的问题。当然,生产厂家从源头灭绝甲醛污染才是关键。

光催化剂清除建材的甲醛的原理在于:经紫外线照射后,光催化剂表面的氢氧离子会被电洞氧化成“氢氧自由基”,氢氧自由基会从其他的有机物(甲醛及各种挥发性有机物)抢走电子,而被抢走电子的有机物会因为失去键结能力而降解成为更小的分子,如二氧化碳、水。相对甲醛去除剂而言,光催化剂分解不会产生后续的有害有机化合物,从而避免了二次污染。

此外,由于三氧化钨光催化剂具有更大的光响应波段,能有效地利用可见光和室内人造光源,不再依赖太阳紫外线,因而,对与无法经常被强光照射的橱柜内部也能起到很好的甲醛分解效果。因而,光触媒因其安全性、能耗小、最终产物(二氧化碳和水)安全无害等,被认为是最理想的除甲醛材料。

微信:
微博:

 

邂逅三氧化钨光触媒

涂覆光触媒的汽车后视镜二十一世纪被说成是环境的时代。光触媒的很大特征就是利用太阳能和雨作为主要能源,而不对环境增添负荷。发现光催化现象已经有40多年,大概20年前,人们发现镜子的玻璃进行氧化钛的表面涂层处理后,镜子就不会朦胧不清。其原因是在强光照射下,镜子表面的一部分氧被去除,从而使水更容易吸附,更亲近水,创造出一个水滴形成平面的表面,也就是超亲水性反应。
 
这种光触媒的超亲水性效果也使用于汽车侧后视镜。由于光催化剂表面上的水平滑地附着状况不稳定,若放到暗处,则会回到原来氧化钛的表面状态。但是,如果同时使用硅和光催化剂进行表面涂层处理,由于硅很容易储存水,可以带来相辅相成的效果。
 
光触媒主要用于4个领域中,即空气净化、自动清洁、水净化、抗菌与杀菌。例如,放置在吸烟板上的使用光催化技术的脱臭装置;安置在天花板上的光催化剂式空气清洁机,能依靠光催化剂分解掉烟气中的乙醛和氨;一些车站的月台使用添加光催化剂的帐篷;人造花的叶子经过光催化剂表面涂层处理,用以吸附房间空气中的烟味,等等。
 
三氧化钨是被发现且成功开发和批量生产的,具有传统光催化剂10倍以上活性的可视光型光触媒,其响应波长范围从400nm到800nm的光。这种新型的光触媒是在三氧化钨中添加铜离子,反应过程中电子由氧化钨向铜离子移动,铜离子储藏电子并高效地产生还原反应。这种高性能的可视光型光触媒被认为可以在室内发挥空气净化、防污、抗菌、抗病毒等作用,而且有望进一步实用化。
 
伴随高性能的可视光型光触媒的成功开发,人们对氧化钨的关注正在日益提高,特别是纳米三氧化钨,它是一种具有较大比表面积、表面效应显著、特殊的催化性能的氧化钨。作为一种宽带隙的n型半导体,纳米氧化钨光触媒在大气污染物、室内空气中的挥发性有机化合物(VOC)的分解消除以及除恶臭、防止传染病的世界性流行等,被寄予非常高的期望。
微信:
微博:

 

梯度结构硬质合金球齿

梯度结构硬质合金球齿,也被称为多结构或多相硬质合金球齿。硬质合金的硬度与其WC粒度和Co密切相关。通常WC含量越高,晶粒越细,硬度也相应越高;Co含量越高,硬度则相应越低。梯度结构硬质合金材料由于组织不均匀,其硬度分布也不一致。而梯度结构的硬质合金球齿三层显微组织结构也有明显的差异:表层由于WC颗粒富集,因而具有较高硬度;中间层则Co相分布较多,硬度相对较低;内部又含有大量W相,硬度也相对升高。在整个渗碳过程中,随着渗碳时间的增加,合金表面的Co相不断地向合金中间层迁移,所以合金中间层Co相含量随渗碳时间的增加而增加。与此同时,合金表层WC晶粒发生长大,合金内部由于渗碳烧结时溶解-析出机制的作用,WC晶粒也出现轻微长大的趋势。这样的三明治结构能够同时改善材料的表面硬度和内部韧性,能够较为有效地调和硬质合金球齿耐磨性和韧性之间的矛盾。

梯度结构硬质合金的实质是在制取缺碳即含η-相的硬质合金的基础上通过渗碳处理来改变合金中粘结相的分布,使其呈低度结构,也使得不同部位的材料获得不同的使用性能。目前,梯度结构硬质合金球齿的主要工艺方法包括复合硬质合金法、粉末分层(粘结剂含量不同)压制法、金属溶体浸渍法等等。相比于这些方法,缺碳硬质合金渗碳处理法具有许多优势,如耐磨性以及韧性更为优良;可根据不同的使用需求在不同部位加以不同组合,工艺灵活性和应用广泛性都得到极大的提升;设备简单、操作方便、成本相对较低。复合硬质合金法采用具有不同粒度的硬质合金粉末或者利用分割成具有不同粒度分布区域的硬质合金,该方法能够在硬质合金烧结体内部获得不同的粘结相含量。然而,这样细晶粒部分具有比粗晶粒部分的粘结相含量较高,但是二者在不同部位的耐磨性和韧性却差别并不大;采用粉末分层压制法(粘结剂含量不同),则需要使用集中不同粘结剂含量的硬质合金粉末逐层进行压制。这样一来,不仅工艺操作复杂,而且在烧结过程中压坯不同粘结剂含量的各层间容易产生均质化,使得合金不同部位间的耐磨性和韧性的差异也在逐步缩小;而金属溶体浸渍法需要专门装置制备金属溶体并需浸渍,从而使得所制取的梯度结构近局限于表面区域,应用范围极大受限。

缺碳硬质合金渗碳处理法,是在硬质合金混料含碳量低于化学计量值情况下(低碳或缺碳),烧结后会在硬质合金结构中生成缺碳相—η相。无论是游离碳相还是缺碳相都会对硬质合金制品产生不利的影响。因为η相太脆,容易在表面形成微裂纹,从而导致硬质合金在使用过程中发生断裂。对于带硬质合金球齿的钻头,耐磨性是选择的首要因素。而Co含量较低的硬质合金难以进行焊接,因为焊接时所产生的焊接应力有可能导致合金的断裂。在硬质合金球齿镶焊固定于钢体时,在球齿与钢体接触表面的上方常常会在钻进时产生间隙,并在钻进过程中逐渐扩大,最终球齿发生断裂,一般发生于球齿的底面部位。

硬质合金球齿

微信:
微博:

 

铯钨青铜粉体的固相合成法

WO3在电致变色、催化、气敏性等方面具有优良的性能,其复合氧化物——钨青铜,一般指有较深的金属光泽色的金属氧化物,并且通常是金属导体或金属半导体,钨青铜通式AxWO3,然而随着阳离子的种类及摩尔数的不同(A、X值的不同),化合物的结构及颜色的深浅会有所差异。目前做的多的有钾铯钨青铜、铯钨青铜,铯钨青铜因其低电阻及优异的可见光透过率和近红外遮蔽性能,而广泛地用于制备导电薄膜,用在玻璃透明隔热涂料中作为隔热剂。
 
目前制备铯钨青铜的方法有很多,有一种铯钨青铜粉体及其制备方法,采用钨酸为钨源,加入水或醇溶剂,Cs/W摩尔比为(0.01〜0.35): 1,180〜200°C条件下反应3天,获得的粉料晶相组成为Cs2WO3或Cs32WO3。这种液相合成法的制备周期长,制得的粉料的颜色较浅,红外阻隔效果较差。还有一种方法是在有氮气保护的条件下,分别在700℃、800℃、900℃保温1小时合成了 CsxWO3。在800℃条件下合成的Cs33WO3颗粒是典型的六方晶系钨青铜结构,并且具有优良的近红外吸收特性,粒径在30-100nm。卓越的近红外吸收波谱使其成为热屏蔽玻璃的替代材料。但是,在反应中通入惰性气体势必增加设备投入,气源成本也会提高。
 
针对上述现有技术存在的不足,有学者提出了一种无需外通气体保护、自真空烧结的铯钨青铜粉体的固相合成法。其特征在于包括以下步骤: (1)按W/Cs摩尔比(2〜3.5):1称取钨化合物、铯盐,研磨至混合均匀; (2)将研磨物装入密闭容器后入马弗炉中反应,反应温度为750〜800°C,反应时间为1 〜2h ; (3)反应后得到结晶度完整的蓝黑色铯钨青铜粉。
 
该方法首次采用固体原料、直接在密封容器内反应制得铯钨氧化物,不需要通惰性气体或还原气体,利用NH3、水蒸气或CO2等自身反应产生的气体作为保护气,使得到的粉体颜色为蓝黑色,节省气源,降低成本,且合成工艺简单,反应周期短,适合工业化生产。

铯钨青铜
微信:
微博:

 

稀土在钨电极中的作用

在钨电极中,钍钨电极具有良好的焊接性能,是应用最广泛的钨电极。但是因为钍具有放射性污染,在生产和使用的过程中会危害人类的健康和污染环境。经过不断的研究和发展,研究者研制除了多元复合稀土钨电极,它被认为是代替钍钨电极的最佳材料。

钨电极

稀土作为活性物质添加到钨基体中能够有效的降低钨电极材料的逸出功,提高其焊接性能。在多元稀土钨电极中,掺杂稀土元素包括La、Y和Ce。这三种元素在不同的温度下扩散速率不同,Ce是最先向表面扩散,降低材料表面的逸出功,使得点击引弧容易。稳弧燃烧时,La在表面覆盖度最大,起主要作用。而在大电流下工作时,Y能够及时向表面扩散迁移,位错表面活性层的覆盖度,使得点击在大电流条件下也能稳定工作。这三种稀土元素协同作用,使得多元复合电极的性能优于钍钨电极。

另外,稀土有利于细化还原粉末,易于促进β-W的形成。β-W的形成使得烧结工艺不易于控制。在钨电极烧结过程中,稀土不仅会对钨晶粒的长大起阻碍作用,且提高了钨的回复和再结晶温度,使得钨电极的变形抗力增大,导致烧结工艺不易于控制。这也是,多元复合稀土钨电极加工成品率低,生产成本高的原因之一。

未来的研究应该朝着提高多元复合稀土钨电极制备技术的方向发展,提高成品率和加工率,降低生产成本,使其应用更加广泛。

微信:
微博:
 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。