复合稀土钨电极商用焊机测试

在实验过程中采用的是晶闸管控制直流TIG焊接电源,其型号为YC-300TSPVTA,测试的电子秒表型号为TREREX。游标卡尺型号为025,编号096583,电子天平型号为AEL-200,数字万用表型号为Bestillingsnr。

引弧性能:
操作规范:钨丝直径为2.4mm,尖部锥角45°,钨电极伸出长度为8mm,引弧电流80A,电弧持续时间为10S,弧长为3mm,重复30次,氩气流量为8L/min,直流正接。

测试结果:复合电极在30A、80A和150A焊接电流下,重复引弧30次皆引弧成功,其成功率为100%,具有良好的引弧性能。

电弧静特性曲线:
操作规范:钨丝直径为2.4mm,尖部锥角45°,钨电极伸出长度为3mm,弧长为3mm,氩气流量为8L/min,采用直流正接,钨丝为阴极,水冷紫铜为阳极。

测试结果:从测试结果图4-24可知,复合电极的静特性曲线低于钍钨电极,说明其具有较低的逸出功和较强的电子发射能力,因此其具有较好的焊接性能。

电极烧损率:
操作规范:电极直径为2.4mm,焊接电流180A,电弧持续时间20min,电极伸出长度3mm,弧长3mm,氩气流量8L/min,水冷紫铜为阳极,电流为直流正接。

测试结果:从测试结果表图4-5可以发现,多元复合稀土电极的烧损性能优于钍钨电极。

通过测试发现,该测试结果与成分筛选时所进行的测试结果一致,说明优化生产技术制备获得的复合稀土钨电极性能优良,且超越了同规格的钍钨电极。

钨电极性能

微信:
微博:

 

三氧化钨的电、磁性质

三氧化钨的理想结构的WO6八面体结构,其材料内部总是存在不同程度的氧缺位,它的晶体结构是比较复杂的,随着氧缺位数量的增加,三氧化钨晶体的内部分布变得有序,形成所谓的切变面。三氧化钨的物理性质十分复杂,严格满足化学计量,且无任何杂质的WO3 应该是无色透明的绝缘体,室温下其禁带宽度为2.9eV。非化学计量的WO3-y陶瓷则呈现n型半导体行为,禁带宽度2.4~2.8eV,颜色随着氧含量的变化从亮黄色到黄绿色而不同。1959年报道在WO3 单晶上进行电阻率测量结果ρ=1.7*10-1Ω•m。而有一个十分明显的结论就是,对于WO3-y单晶,它的电学性能随其结构和氧含量的变化可以分别呈现出金属或半导体行为。氧含量很大程度上决定了钨氧化物材料的电学性质。

WO3理想WO6八面体结构
 
WO3 的一个极为重要的电学性质是铁电行为,很早以前人们就意识到WO3 晶体是一种铁电材料,它的铁电相变温度T=-40°C或-50°C。在相同工艺条件下,纳米前驱体WO3 陶瓷的介电常数要比微米基WO3 陶瓷提高一个量级,而空气气氛烧结又可以将其介电常数提高一个量级。多晶WO3 陶瓷与其它的压敏电阻(ZnO等)一样,它的非线性电学性质也可以用肖特基势垒模型来解释。
 
另外,关于三氧化钨材料的磁学性质的研究相对较少,主要是通过有关的磁学测量来澄清相应的电子结构和电输运性质。研究发现此类材料具有Psuli型的顺磁性;同时,对三氧化钨低温晶相结构和顺磁性的研究表明,超低温状况下材料也没有出现超导电性,呈现出顺磁性行为。
微信:
微博:

 

钨铜复合材料在微电子封装领域的应用

随着集成电路(Integrated Circuit)芯片技术的飞速发展,对于微电子封装领域也不断提出了新的要求,日渐向着小型、轻薄、低成本以及无铅的方向发展。再者,微电子集成电路的集成规模逐步扩大,集成电路的单位面积功率和发热量也随之上升,这也是微电子封装材料面临的最主要挑战。目前微电子封装复合材料主要有三大类:聚合物基复合材料(Polymer-matrix Composites,PMC)、金属基复合材料(Metal-matrix Composites,MMC)、碳-碳复合材料(Carbon-carbon Composites,CCC)。而其中的金属基电子封装材料是目前研究和发展的重点方向。而向金属基体内部添加低热膨胀系数的高性能陶瓷或其他添加剂又可进一步提高金属基电子封装复合材料的综合性能。

钨铜电子封装材料就是一种金属基复合材料,他可以通过调整W和Cu之间的成分比例获得合理的膨胀系数,进而与微电子器件中的硅片、砷化镓等半导体材料及陶瓷材料进行很好的匹配联结,从而避免了热应力所引起的热疲劳破坏。与此同时,还能获得较好的导电导热性能以及优异的微波屏蔽功能。另外,钨铜作为一种高效散热的热沉发汗材料,当工作温度超过铜的熔点时,由于钨的熔点远高于铜,铜液化甚至蒸发带走了大多数热量,使得相关设备能够正常工作。因此,近年来钨铜复合材料在大规模集成电路和大功率微波器件中得到了广泛的运用,如在微处理器、微波组件、无线电通讯装置和RF动力装置等高新技术产品中,其极大地提高了微电子器件的使用功率,促使其进一步小型化。

钨铜电子封装片

微信:
微博:

 

铈掺杂纳米WO3的气敏元件

气敏传感器是传感器领域的一个重要分支,WO3作为一种n型半导体材料,是一种具有高灵敏度的气敏材料,特别对氧化氮、硫化氢、氨气、氢气等的气敏材料有灵敏反应。WO3气敏材料研究和开发应用等方面都已经有了很大的进展,同时需要克服一些困难。如敏感元件在低浓度时的灵敏度低,工作温度高及响应恢复时间长,稳定性不足,重复性差等缺点。

三氧化钨和气敏件
 
掺杂能克服一些难题,特别是稀土掺杂对WO3气敏性能的提高有明显效果,其所起的作用大部分归结于细化晶粒、修饰材料表面、通过掺杂形成杂质缺陷而提高材料的导电性等,进而有效改善了WO3的气敏性能。铈是第ΙΙΙ族副族镧系元素,一种稀土元素,它是一种银灰色的活泼金属。文章利用溶胶-凝胶法制备了铈掺杂的纳米WO3气敏元件,并研究其性能;其制备步骤如下:
1. 将适量的仲钨酸铵加入到蒸馏水中,在70°C超声溶解,得到弱酸性的溶液;
2. 用3mol/L的氨水调节上述溶液,使得pH值为7~9,;
3. 滴加适量的硝酸铈乙醇溶液,得到白色粘稠溶胶;
4. 用硝酸调节上述溶胶至pH值为2~4,然后加热蒸发30分钟,直至溶胶浓缩至20~25mL,得到白色凝胶;
5. 转入鼓风干燥箱中于80°C干燥1小时,再在马弗炉中于500°C煅烧1小时,即得到Ce掺杂的纳米WO3粉体。
 
分析表明,不同Ce掺杂量的三氧化钨元件对乙醇、苯、甲苯、甲醛、CO等的灵敏度有不同程度的反应,如纯WO3元件对硫化氢的灵敏度达到2600以上,而对其它气体的灵敏度都不超过10,掺杂1%铈的纳米WO3元件较其它掺杂量的元件有更好的灵敏度,其中NO灵敏度达360,等。另外,Ce掺杂的WO3气敏元件有较好的抗湿性。
微信:
微博:

 

纳米结构钨铜复合材料发展与应用

相比于常规结晶材料,纳米结构钨铜复合材料具有不同的特异性能,如更高的致密度、更高的强度、更好的气密性以及更为优良的导电导热性能,因而受到了国内外相关材料研究人员的广泛关注。经过不同工艺制得的钨铜纳米复合粉体,粉末粒度极大地细化,分散度大大提高,这都将有效地改善W-Cu系统的烧结特性,从而有利于钨铜复合材料获得接近完全的致密度。

目前纳米结构钨铜复合材料的研究重点主要在制备工艺和烧结特性两个方面。制备工艺上,国内外研究较多是机械合金化法(Mechanical Alloying)、机械-热化学法(Mechanical Thermo-chemical Process)、喷雾干燥法(Spray Drying Method)、溶胶-凝胶法(Sol-Gel)等工艺。有研究表明钨铜氧化物共还原粉在高度弥散状态下,仅依靠毛细管作用就能引起颗粒重排,从而实现完全致密化。采用喷雾干燥燃烧结合后续还原处理制备的纳米结构钨铜复合粉体,在铜含量在20%-40%时,通过1250℃保温1h的烧结可以获得致密度98%以上;采用机械-热化学法与液相烧结结合的方法在没有烧结活化剂情况下,制得了平均颗粒尺寸1μm的钨颗粒;采用机械合金化法,在较低温度下(1100℃)液相烧结可有效强化粉体的烧结性能,这是由于钨铜假合金中同种颗粒W-W之间的相互作用以及不同颗粒间W-Cu的相互作用。其次,从烧结特性上看,由于纳米粉末的晶粒较为细小(一般粒径不大于100nm),比表面积较大,表面活性较强,粉末之间的接触面积也较大,烧结驱动力大,因而所需烧结温度较低且致密化速度快。

钨铜配件

微信:
微博:

 

 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。