稀土荧光粉发光机理

稀土荧光粉是指在外界能量激发下能发荧光的含稀土元素的无机粉末材料,主要用来制造彩色显像管和荧光灯。那其发光机理是怎样的呢?

稀土荧光粉发光机理图片

对于稀土发光材料而言重要的是稀土离子。稀土元素的外层电子结构为4f0-145d0-16s2,其4f壳层电子的能量低于5d壳层电子而高于6s壳层电子的能量,因而出现能级交错现象。

稀土离子在化合物中通常失去两个6s电子和一个4f电子而呈三价状态。三价稀土离子在晶体中的电子跃迁有以下三种情况:

(1)由于稀土离子含有特殊的4f电子组态能级,当其受到激发时,4f电子可以在不同能级间产生激发跃迁,当其退激发时,跃迁至不同能级的激发态电子又回到原来的4f电子组能态,从而产生发光光谱,即4f-4f和4f-5d之间的相互跃迁。其中f-f跃迁是宇称禁戒的。但实际上可以观察到这些跃迁产生的光谱,这是由于在基质晶格内晶体环境的影响,这种禁戒会被部分解除或完全解除,使电子跃迁有可能实现。 

稀土荧光粉发光机理图片

(2)由于4f壳层电子被5s25p6壳层的8个电子包围,4f能级受外层电子轨道的屏蔽,使f-f跃迁的光谱受外界晶体场影响较小,谱线表现为尖锐的吸收峰。f-d跃迁是因为4f激发态能级的下限高于5d能级的下限而使电子跃迁到较高的5d能级而产生的电子跃迁。根据光谱选择定则,f-d电子跃迁是允许跃迁,吸收强度比f-f跃迁大四个数量级。由于d电子因裸露在离子表面,其能级分裂受到外在晶体场强烈影响,因而其电子跃迁往往表现为一定的宽带吸收峰。

在稀土离子中,Ce3+, Tb3+, Pr3+, Eu3+和Eu2+都存在5d能级,其中Tb3+,Pr3+,Eu3+的5d能级位置较高,难以实现f-d跃迁,Ce3+和Eu2+则由于5d能级位相对较低,因而可观察到由f-d跃迁所引起的宽带发射光谱。

(3)稀土离子和相邻阴离子间的电荷转移跃迁,这类跃迁的特性在很大程度上也取决于环境的影响。稀土离子发生f-d跃迁还是电荷转移跃迁取决于该离子产生跃迁时所需要吸收的激发能的高低。

发光材料之所以具有发光性能是因为合成过程中材料基质晶格中存在结构缺陷。由于发光材料基质的热歧化作用出现的结构缺陷所引起的发光叫做非激活发光(或叫自激活发光),产生这种发光不需要添加激活杂质。在高温下向基质中掺入激活剂出现杂质缺陷,由这种缺陷引起的发光叫激活发光。大部分发光材料都是属于激活型的,激活杂质即充当发光中心。

 

 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。