Effect of Zrb2 Addition on 93wt% Tungsten Heavy Alloy

ultrafine W-Ni-Fe composite powders image
Recently, it has been reported that 93wt% heavy tungsten alloys reinforced with highly uniformly dispersed ZrO2 particles have been prepared by powder metallurgy. The effect of the addition of zirconium boride (ZrB2) on 93wt% tungsten heavy alloys was investigated.

Read more: Effect of Zrb2 Addition on 93wt% Tungsten Heavy Alloy

Tungsten Disulfide for Laser Saturable Absorbers Application

Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers image

The researchers found that tungsten disulfide (WS2) can be converted into a direct semiconductor with a band gap of 2.1 eV by controlling the chemical composition and number of layers due to the quantum confinement effect. In addition, WS2 has better saturable absorption properties than graphene and carbon nanotubes in the near- and mid-infrared bands. Due to these excellent properties, it is increasingly being used in laser saturable absorbers (SAs).

Read more: Tungsten Disulfide for Laser Saturable Absorbers Application

WS2 Films for Catalysis Application

Catalytic decomposition of different samples under ultraviolet light irradiation image

Due to its unique band gap properties, inherent vacancy defects, and low electrical conductivity, WS2 films can be used for catalysis. Catalysis including photocatalysis and electrocatalysis is essential in our daily life, and they have been widely used for environmental protection and clean energy generation.

Read more: WS2 Films for Catalysis Application

Tungsten Disulfide for Electrocatalysis Application

XPS spectrum of the S 2p and W 4f signals for the pristine image

Tungsten disulfide (WS2) is promising electrocatalysis with a layered structure with adjustable electrical properties and exposed edges that can act as the active center. It is mainly used as an electrocatalyst for hydrogen evolution reactions. The surface of WS2 is inert; however, the catalytic activity of WS2 occurs at the lamellar edges, which determines the overall catalytic performance. In order to improve the catalytic effect of WS2, the electrolyte must be in complete contact with the WS2 layer.

Read more: Tungsten Disulfide for Electrocatalysis Application

Stripping Method for WS2 Preparation

WS2 film preparation by mechanical stripping and liquid-phase stripping and lithium-ion intercalation image

Bulk tungsten disulfide (WS2) can be stripped by physical and chemical methods, which are classified as mechanical and stripping method, and lithium-ion intercalation method. In recent years, in order to obtain large-area, high-quality monolayer tungsten disulfide films, researchers have tried to grow monolayer tungsten disulfide films on ingot substrates and then exfoliate them by atomic or molecular intercalation methods.

Read more: Stripping Method for WS2 Preparation

 

WeChat