钨钢拉刀的合理使用

在生产中常由于钨钢拉刀结构和使用方面存在问题,而影响拉削质量和钨钢拉刀使用寿命,严重时会损坏拉刀。其中较长出现的弊病及解决的措施简述如下:

一、防止钨钢拉刀的断裂及刀齿损坏

拉削时由于刀齿上受力过大,拉刀强度不够,是损坏钨钢拉刀的主要原因。造成刀齿受力过大的因素很多,例如:拉刀齿升量过大、拉刀弯曲、切削刃各点拉削余量不均匀、刀齿径向圆跳动大、预制孔太粗糙、材料内部有硬质点、工件强度过高、严重粘屑和容屑槽挤塞以及工件夹持偏斜等。为了使硬质合金拉刀顺利拉削,可采用如下措施:

1)要求预制孔精度IT8~IT10、表面粗糙度度Ra≤5μm,预制孔与定位端面垂直度偏差不超过0.05mm。
2)严格检查拉刀的制造精度。对于外购拉刀可进行齿升量、容屑空间和拉刀强度检查。
3)拉削高性能和难加工材料,可选取适当热处理改善材料的加工性,也常使用高性能材料的钨钢拉刀或涂层拉刀。
4)保管、运输钨钢拉刀时,防止拉刀弯曲变形和碰坏刀齿。

二、消除拉削表面缺陷

拉削时表面产生鳞刺、纵向划痕、压痕、挤光、环形波纹和啃刀等是影响拉削表面质量的常见缺陷,其形成的原因很多,其中主要有:刃口钝化或微小崩刃、刃口粘屑,刀齿刃带过宽或宽度不均,前角太大或太小,拉削过程中产生振动等。

消除拉削缺陷,提高拉削表面质量的途径有:

1)提高刀齿刃磨质量,防止刃口微崩产生并保持刃口锋利。各齿前角和刃带宽度保持一致。

2)保持拉削过程稳定性,增加同时工作齿数,减小精切齿和校准齿的齿距,提高拉削工艺系统刚性。

3)合理选用拉削速度、生产实践中经常遇到因拉削速度很低拉削时产生爬行,拉削速度过高会出现振动。此外,拉削速度是影响拉削表面质量、拉刀磨损和拉削速率的重要因素。

4)使用钨钢拉刀、涂层拉刀、激光强化高速钢拉刀等,这对于提高拉削速度,减少拉刀磨损、提高拉刀寿命和改善拉削表面质量均有良好作用。

5)合理选用与充分浇注切削液。例如,拉削碳钢与合金钢时,若选用极压乳化液、硫化油和加极压添加剂的切削油对提高拉刀寿命、减小表面粗糙度均有明显效果。

 

钨产品生产商、供货商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件: sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

钨钢钻的选择步骤

钨钢钻的选择步骤

①确定孔的直径、深度和质量要求
还应考虑生产经济性和切削可靠性等。

孔的直径、深度和质量要求

硬质合金钻的选择

 

②选择钻头类型
选择用于粗加工和/或精加工孔的钻头。检查钻头是否适合工件材料、孔的质量要求和是否能提供最佳的经济性。

选择钻头类型

硬质合金钻的选择

 

③选择钻头牌号和槽形
如果选择了可转位刀片钻头,必须单独选择刀片。找到适用于孔直径的刀片,选择推荐用于工件材料的槽形和牌号。为整体或焊接钨钢钻头选择合适的牌号。

选择钻头牌号和槽形

硬质合金钻的选择

 

④选择刀柄类型
许多钻头有不同的安装方式。找出适用于机床的类型。

选择刀柄类型

硬质合金钻的选择

 
 
钨产品生产商、供货商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件: sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

钨钢刀具钻削工艺

钨钢刀具钻削覆盖了用金属切削刀具在工件上切削圆柱形孔的方法。钻削和后续的加工工艺相关,例如套孔、扩孔、铰孔和镗削。所有这些工艺的共同点是旋转主运动和线性进给运动相结合。套孔主要用于大直径孔,不像实体钻削那样需要消耗大量功率。套孔钻不是钻削孔的整个直径,而是在孔的圆周上钻削一个环。它不是所有材料都以切屑形式去除,而是留下了围绕中心的一个芯,因此,这种方法主要用于通孔应用;扩孔是用专用刀具扩大已有的孔,这种方法是在孔的周边切削掉大量金属;铰孔是对已有孔进行精加工。这种方法将去除很小的加工余量,从而达到较好的表面质量和小公差。

钻削工艺

钻削工艺

实体钻削是最常见的钻削方法,在实体材料上进行钻削应预先确定孔的直径,并且可以在单一工序中完成。

随着现代浅孔钻削技术的发展,对预加工和后续加工的需要发生了戏剧性的变化。现代刀具使实体孔的切削可以在单一工序中完成,一般不需要预先加工中心孔或引导孔。因为孔的质量较好,所以一般不需要为提高测量精度和表面质量而再加工。

在某些方面,钻削可与车削和铣削相比,但是对断屑和排屑的要求比较高,这对钻削来说是最重要的。切削工艺受到孔直径和深度的限制,孔深越大,对工艺的控制和排屑则要求越苛刻。有许多零件需要钻削浅孔,要求金属去除率要高于孔的质量和可靠性。

切削参数

对于钻削来说,切削速度(VC),单位为米/分,是由圆周速度确定的,它可以用主轴转速计算(n)得到。主轴转速是以每分钟转数表示的。在一转中,钻头周长为π×Dc,Dc为钻头直径。钻头的切削速度会发生变化,它取决于钻头上切削刃的横截面。从钻头中心到圆周,其速度从零到最大值。推荐的切削速度为圆周的最高速度。

每转进给(fn),单位为mm/分,表示了在一转中刀具的轴向运动。它用于计算穿透率,和用于表示钻头的进给能力。

穿透率或进给速度(Vf),单位为mm/分,是刀具相对工件的进给,它用长度/单位时间表示,也叫机床进给或工作台进给。每转进给与主轴转速的乘积给出了钻头穿透工件的速率。

和径向切削深度(ap)及每齿进给(fz)一样,孔深(L)是用于计算的一个重要因素。

切削速度VC、穿透率Vf、主轴速度n、每转进给fn

切削参数

孔的加工特性

孔可以是粗加工制造的,也可以是精加工切削而成的。大多数工件至少有一个孔需要加工,具体取决于孔的不同用途和功能,它需要加工到各种极限。从孔加工的观点来看,可表示孔特性的主要因素包含:直径、深度、质量、材料、加工条件或工况、可靠性、生产率。

切削力和功率

加工切削孔需要一定量的能量。在钻头穿透工件以去除金属时,切削力作用在钻头上。因此,钻削有一定功率要求。在开始讨论这个问题时,首先要知道所需功率与工件材料有关,当计算时,需要确定所指材料的特定切削力是多大。

功率除了材料因素外,钻削所需的功率(Pc)还与直径、进给率和切削速度有关。所需近似功率的计算公式可以用来检查机床能否满足钻削功率的需要。对于现代机床来说,钻削大部分中等直径的孔是没有问题的,但是对于有几倍孔径深度的大直径孔来说,还是需要检查功率。

扭矩对于大直径钻削工序来说,特别是对于套孔考虑在切削时钻头所承受的总钻削扭矩时,以Nm为单位的扭矩值(Mc)是另一个有效值。进给、直径、材料是影响扭矩值的主要因素。扭矩是在每个切削刃上的扭矩的总和,是切向力和半径到中心距离的径的乘积。

进给力从钻削观点来看,以N为单位的进给力(Ff)是最重要的因素。这是穿透材料时作用在钻头上的轴向力。因为确保主轴功率和主轴强度满足钻削工序的要求是非常重要的,因此需要考虑过大的进给力会影响到孔的质量、钻头的可靠性和使机床停转。在另一方面,从生产率的观点来看,足够的进给力对钻削作用是重要的。进给力和钻头的直径、进给和所钻削的材料有关。钻头的切削刃角度(kr)也会影响进给力。

切屑控制和切削液

切屑控制和切削液是钻削中的重要因素。生成合适的切屑形状和大小以及排除它们对任何钻削工序都是至关重要的。在这方面,如果没有满意的性能,任何钻头都会由于切屑会在孔内堵塞而在短时间内停止切削。现代钻头高切削速度和高进给都可以通过使用切削液在获得有效的排屑时变为可能。

切屑形成受到工件材料、刀具槽形、切削速度、进给的影响和一定程度上切削液选择的影响。一般来说,高进给、低切削速度将产生短的切屑。如果切屑可以稳定地流出,切屑长度和形状就可以说是可接受的。大部分浅孔钻有两个排屑槽。使用现代机床和钻削刀具时,通过钻头内冷却液孔提供切削液,可以有效地完成排屑。切削时,切削液从钻头的顶尖喷射出,不但可以润滑钻头,而且使切屑通过排屑槽流出。

切屑形成、排屑和切削液供应

切屑形成、排屑和切削液供应

现代钨钢钻头具有高金属去除率和大密度的排屑槽。在高压下,通过内供式切削液将这些切屑排出。所需的压力(Mpa)和流量(升/分)主要取决于孔径,但是也受到切削条件和工件材料的影响。切削液通过内部供应时,由于离心力的作用,将引起压力降低,旋转钻比非旋转钻要求更高的切削液压力。这并不必须用很高的切削液压力来补偿,可以使用流量补偿器。但是,对于非旋转钻和使用外切削液,也需考虑传输系统内压力的下降。

 

钨产品生产商、供货商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件: sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

钨钢切削刀具的应用

钨钢切削刀具的基体材料

金属切削过程中,钨钢切削刀具切削部分直接完成切削工作。钨钢切削刀具材料性能的优劣直接影响刀具的质量。切削加工生产率和刀具耐用度的高底、零件加工精度和表面质量的优劣等,在很大程度上都取决于钨钢切削刀具材料的选择是否合理。

金属切削过程中,钨钢切削刀具不但承受很大的切削力和很高的温度,而且还要经受冲击载荷和机械摩擦。因此,钨钢切削刀具材料必须具备高硬度、高耐磨性、足够的强度和韧性以及良好的高温耐热性、化学稳定性和导热性等方面的性能。

常用的刀具材料可分为工具钢、钨钢、刀具陶瓷、超硬刀具材料四大类,各类刀具材料的物理力学性能见下表:

硬质合金切削刀具物理力学性能

 
 
钨产品生产商、供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

电迁移法提纯稀土金属-应用实例

(1)金属铈的电迁移提纯  由熔盐电解制取的金属铈纯度最高可达到99.8%,其中主要杂质是铁、氧、碳、钼等。将此金属铈重熔铸成长约160mm,直径约为13mm的棒。然后在有惰性气体保护的密闭装置中,将其两端夹在水冷电极头具上,通以120V和500A的直流电流,使金属铈棒加热至(600±10)℃(约低于铈熔点200℃),经长时间电迁移精炼的结果如表1所示。实践得出,碳杂质的有效迁移约需要100h,而铁则约50h就足够充分了。

表2  电迁移精炼前后金属铈中杂质的含量              单位:μg/g

杂质元素

精炼前组成均匀的棒

精炼后棒的中间段

C

O2

Fe

Cu

Mo

400

50

1300

120

400

140

350

30

40

440

杂质元素

精炼前组成均匀的棒

精炼后棒的中间段

Al

Ca

Mg

Si

500

20

10

250

200

10

40

70

(2)其他稀土金属的电迁移提纯  由于各稀土金属的熔点、导电率以及各杂质在其中的U/D值的差别,电迁移所需的工艺条件也不相同,表2列出了电迁移金属钇、钆、铽、镥、钕的工艺条件及提纯效果。

表2  稀土金属电迁移提纯工艺条件及提纯效果

元素

气氛

温度/℃

时间/h

原试棒杂质含量(μg/g)

提纯后杂质含量(μg/g)

C

N

O

C

N

O

Y

Y

Gd

Gd

Tb

Lu

Nd

氩气

1.3×10-5Pa

氦气

超高真空

超高真空

超高真空

超高真空

1370

1175

1245

1100

1050

1150

860

200

190

150

310

350

168

1237

100

23

1000

70

13

510

10

28

4

30

15

54

3330

25

81

500

380

475

45

120

2

8

60

75

8

0.5

 

15

6

1

340

60

6

11

25

42

16




稀土供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

稀土矿床的工业要求

稀土元素在地壳中的克拉克值为0.0153%,与常见的元素锌、锡,钴含量相近;即使是克拉克值较小的铥、镥、铽、铕、钬等,也比铋、银、汞的含量高。

稀土元素在地壳中分布虽较广,但不是所有含稀土的矿床都符合工业开发利用的要求。根据目前选矿和提取的技术水平,对稀土矿床的工业指标要求如下表所列。

表1  稀土矿床工业指标

矿床类型

边界品位

工业品位

可采厚度m

夹石剔除厚度,m

含氟碳铈矿、独居石的原生矿床

Ce2O3或R 2O30.5%

Ce2O3或R 2O31%

1~2

2

磷钇矿、硅铍钇矿等伟晶岩和碳酸岩矿床

Y2O3或R2O3

Y2O3或R2O30.05~0.1%

1~2

2

独居石砂矿及风化壳矿床

独居石100~200g∕m3

独居石300~500g∕m3

1

1~2

磷钇矿砂矿及风化壳矿床

磷钇矿30g∕m3

磷钇矿50~70g∕m3

0.5~1

2

如果稀土元素在矿床中作为伴生组分进行综合回收,则工业指标要求可根据矿床中主要有用元素而定。对于我国特有的离子吸附型稀土矿床,其工业指标要求有待研究和制定。


稀土供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

稀土元素概况

稀土金属(rareearthmetals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。

稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。

这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。

大多数稀土金属呈现顺磁性。钆在0℃时比铁具更强的铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。除镱外,钇组稀土较铈组稀土具有更高的硬度。

稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。

我国拥有丰富的稀土矿产资源,成矿条件优越,堪称得天独厚,探明的储量居世界之首,为发展我国稀土工业提供了坚实的基础。稀土元素在地壳中平均含量为165.35×10-6(黎彤,1976)。在自然界中稀土元素主要以单矿物形式存在,目前世界上已发现的稀土矿物和含稀土元素的矿物有250多种,其中稀土含量ΣREE>5.8%的有50~65种,可视为稀土独立的矿物。重要的稀土矿物主要为氟碳酸盐和磷酸盐。稀土矿物总的特点:一是缺少硫化物和硫酸盐(只有极个别的),这说明稀土元素具有亲氧性;二是稀土的硅酸盐主要是岛状,没有层状、架状和链状构造;三是部分稀土矿物(特别是复杂的氧化物及硅酸盐)呈现非晶质状态;四是稀土矿物的分布,在岩浆岩及伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。富钇的矿物大部分都赋存在花岗岩类岩石和与其有关的伟晶岩、气成热液矿床及热液矿床中;五是稀土元素由于其原子结构、化学和晶体化学性质相近而经常共生在同一个矿物中,即铈族稀土和钇族稀土元素常共存在一个矿物中,但这类元素并非等量共存,有些矿物以含铈族稀土为主,有些矿物则以钇族为主。

在目前已发现的250多种稀土矿物和含稀土元素的矿物,适合现今选冶条件的工业矿物仅有10余种:1)含铈族稀土(镧、铈、钕)的矿物:氟碳铈矿、氟碳钙铈矿、氟碳铈钙矿、氟碳钡铈矿和独居石。2)富钐及钆的矿物:硅铍钇矿、铌钇矿、黑稀金矿。3)含钇族稀土(钇、镝、铒、铥等)的矿物:磷钇矿、氟碳钙钇矿、钇易解石、褐钇铌矿、黑稀金矿。


稀土供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

区域熔炼法提纯稀土金属-基本原理

在二元体系中,如果将含有杂质的金属熔化后再缓慢降温使之凝固,在一定温度下,当固、液两相处平衡状态时,原金属中均匀分布的杂质将重新分布,继续分段缓慢凝固,则后凝固金属中杂质与先凝固金属中的杂质含量不同。如将含有杂质的金属锭熔化后由一端向另一端逐渐缓慢凝固时,杂质将在某一端富集,使金属得到提纯。这一过程被称为定向凝固。为了达到金属的纯度,经定向凝固的金属需切除杂质富集了的两端段,将中间段再反复定向凝固过程。这样的结果使金属的收率很低,生产成本很高。为了克服此缺点,可采用社区域熔炼法。


稀土供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

火法冶炼生产稀土硅铁基合金-概述

稀土中间合金种类繁多,主要包括稀土硅铁基中间合金、稀土铝合金、稀土镁合金等。用热还原法制取的稀土中间合金主要有稀土硅铁合金、稀土硅铁镁合金、稀土硅铁钡(钙、钛等)合金等。目前它的产量(以稀土氧化物计)约占我国稀土产量的1/3~1/4。

1956年中国科学院上海冶金研究所创造性地研究成功在电弧炉中用75硅铁作还原剂,从含REO4%~6%的包头钢铁公司炼铁高炉渣中回收稀土,制取稀土硅铁合金的工艺。包钢稀土一厂首先采用该工艺,开始生产稀土硅铁合金。

1966年冶金部包头稀土研究院为了满足国家对稀土硅铁合金的需求,打破了中贫铁矿入高炉中不能顺行和易发生爆炸的观点,成功地研制出含稀土的中贫铁矿矿石和低品位稀土精矿球团直接入高炉脱铁去磷,制取REO>10%的富渣,再采用电硅热法冶炼稀土硅铁合金的工艺,使我国稀土硅铁合金的生产步入了新的阶段,合金成本远低于国外的同类产品,这不仅为国内在钢铁生产中大规模推广应用稀土创造了条件,而且促使稀土中间合金在20世纪60年代后期就出口越南和美国,受到了用户的欢迎。

进入80年代,随着白云鄂博矿选技术的突破,工业化生产的中高品位稀土精矿陆续问世,给稀土中间合金生产提供了精料,新的强化冶炼技术和适销对路的合金品种不断出现,促使稀土中间合金工业有了长足的进步和发展。

铸铁、钢和特种合金变质处理的理论与实践的发展,特别是球墨铸铁、石油管线和耐海水、耐大气腐蚀用钢的稀土处理技术的推广,促进了稀土中间合金工业的进一步发展,采用金属热还原法和碳热还原法都成功有效地制取出多种稀土中间合金。特别是90年代,东北大学张成祥、涂赣峰等人发明了在矿热炉中碳热还原一步法生产稀土硅化物合金,并在3600~6300kVA不同容量的矿热炉中成功进行了工业化生产。

稀土中间合金目前已广泛用于钢铁、机制制造和军事工业等部门。目前大部分用作钢铁的添加剂,在钢中的主要作用是脱氧、脱硫,中和低熔点杂质的有害作用,细化晶粒,改善钢的力学性能。在铸铁中,主要作为球墨铸铁的球化剂、蠕墨铸铁的蠕化剂、合金铸铁的添加剂,使各种铸铁的机械性能得到很大提高。

我国的稀土中间合金工业具有产量大、品种多、成本低和综合利用产品多的特点,其原料、工艺及应用领域在世界上独具特色,受到国内外稀土界人士的普遍关注。

我国稀土资源丰富,除包头稀土矿轻稀土资源外,还有四川冕宁的氟碳铈矿,江西等重稀土资源,山东微山湖的氟碳铈矿资源等。它们先后都用于稀于中间合金的生产,为我国参加国际竞争,创造了有利条件。本章主要介绍硅热还原法和碳热还原法生产稀土硅铁合金的原理及工艺过程。


稀土供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

中国稀土湿法冶金、分离提纯技术的创新与发展

解放前,中国没有稀土工业,稀土产品依靠进口。1953年锦州石油六厂用硫酸法分解独居石生产硝酸钍,为石油工业提供催化剂。1957年由于汽灯纱罩用量增加,大量需要硝酸钍。上海永联化工厂开始采用碱法处理独居石,但生产硝酸钍时,稀土仅作为副产品堆存。20世纪50年代中期,中国科学院长春应用化学研究所钟焕邦等同志开始研究单一稀土的分离。北京有色金属研究总院1958年研究从独居石和褐钇钶矿中分离单一稀土,于当年7月制得了16个单一稀土氧化物。并于1960年在北京有色金属研究总院建立试验厂,采用离子交换法和半逆流萃取工艺试制单一稀土氧化物,为北京有色金属研究总院1962年完成16种单一稀土金属的制备创造了良好条件,也为稀土冶炼厂的建设提供了设计依据。20世纪60年代初,长沙602厂、上海跃龙化工厂,包钢8861厂相继建成投产,从此中国稀土工业由试验室走向工业化。

二、稀土矿冶炼与综合利用

(一)包头白云鄂博稀土资源的综合利用

白云鄂博矿位于包头市区以北150公里的白云鄂博地区,是我国著名的以铁、稀土、铌等为主的特大型多金属共生矿床。工业有价元素多达二十多种,稀土元素工业储量为3500万吨。但由于该矿是由氟碳鈰矿和独居石两种稀土矿物组成的混合型矿种,选矿和冶炼难度很大。因此,开始所生产的稀土精矿中稀土含量只有20%~30%。

1966年北京有色金属研究总院、北京有色冶金设计总院、包头冶金研究所、上海跃龙化工厂、长春应用化学研究所和包钢稀土三厂等单位开展了碳酸钠焙烧-硫酸浸出-P204萃取提铈和高温氯化等工艺技术的半工业试验会战,试验结束后包钢稀土三厂使用半工业试验的工艺生产氯化稀土。

1972年北京有色金属研究总院采用回转窑浓硫酸焙烧法冶炼低品位包头稀土精矿(REO20%~30%)生产氯化稀土(第一代酸法),在北京通县冶炼厂进行的工业试验获得了成功,较好地解决了低品位稀土精矿的湿法冶炼工艺。1974年包钢稀土三厂引进北京有色金属研究总院回转窑浓硫酸焙烧冶炼包头稀土精矿新工艺代替碳酸钠焙烧法生产氯化稀土,使稀土回收率由40%提高到70%。

1973~1979年间,哈尔滨火石厂、包钢稀土三厂和甘肃903厂先后采用北京有色金属研究总院第一代酸法工艺生产氯化稀土,使年生产能力猛增到10000吨以上,促进了稀土工业的发展。

1975年,广州有色金属研究院黄国平等同志研究成功了用羟肟酸为浮选药剂生产精矿,第一次从白云鄂博资源中生产出REO~60%的稀土精矿,这是包头矿选矿工艺的一个重大突破。于1976年在包钢稀土三厂进行了生产高品位(REO>60%)稀土精矿的浮选工业试验,获得了完全成功。1981年包钢利用该项工艺建成了两个年产5000吨高品位稀土精矿的选矿车间,使我国高品位稀土精矿的生产能力达到10000吨以上,标志着我国的稀土冶炼工业又进入了新的发展阶段。

1979年北京有色金属研究总院研究成功了硫酸强化焙烧-萃取法生产氯化稀土的新工艺(第二代酸法);上海跃龙化工厂和包头冶金研究所等单位协作研究成功的烧碱法;再加上高温加炭氯化法、硫酸法和碳酸钠焙烧法总称为“五朵金花”,形成了冶炼包头稀土精矿冶炼工艺的百花齐放,互相争艳,各放异彩的喜人局面。

十一届三中全会以采,我国稀土工业进入了一个蓬勃发展的时期,稀土产品市场由国内向国外发展。方毅同志从1978年至1986年先后七次到包头,亲自主持白云鄂博资源的综合利用会议。国家经委成立了全国稀土推广应用领导小组,并于1978年设立全国稀土推广应用办公室。1980年中国稀土学会成立。这一系列的有力措施促进了我国稀土工业的发展。

1980年甘肃稀土公司以30万元购买北京有色金属研究总院硫酸强化焙烧-萃取法生产氯化稀土的新技术(第二代酸法),更新旧工艺,提高经济效益。由北京有色金属研究总院张国成等同志为首与该公司有关同志组成设计组负责工艺设计;并由北京有色冶金设计研究总院负责主体设备设计,新建了一条年产六千吨氯化稀土生产线,1982年投入生产,氯化稀土回收率达到85%以上。这意味着我国包头稀土精矿的冶炼工业技术进入世界先进行列。

1985年,北京有色金属研究总院又研究成功了处理包头稀土精矿第三代酸法工艺,即硫酸焙烧-P204从硫酸体系中萃取分离稀土元素新工艺,该工艺流程简单,稀土回收率高,产品成本低,1985年至1993年相继转让给哈尔滨稀土材料厂、包钢稀土三厂(稀土高科)、包头202厂、甘肃稀土公司等厂,成为处理包头稀土矿的主流工艺。目前包头稀土矿90%以上均采用酸法工艺处理,后续分离提取工艺根据产品结构的不同有一些变化和改进。

(二)离子吸附型稀土矿的开发

1968年,江西908地质队和冶金勘探公司13队首次在江西龙南地区发现了世界上罕见的重稀土离子吸附型稀土矿,这是过去国内外从未报导过的稀土矿物。原矿中的稀土是以离子形式赋存在高岭土等粘土矿物上,砂粒风化矿体复盖很浅,有的裸露于地表,而且此种矿物用普通选矿方法得不到精矿。1970年10月,江西省有色冶金研究所进行龙南稀土矿物质成份和试选的研究,发现其中90%的稀土可以用电解质溶液以离子交换淋洗方式使其进入溶液,并首次命名为“离子吸附型稀土矿”。

1970~1973年,以江西有色冶金研究所为组长,江西908地质队、南昌603厂、九江806厂参加的联合实验组,研究成功了离子型稀土矿氯化钠浸取-草酸沉淀的混合稀土提取工艺(即第一代池浸工艺),解决了从离子吸附型矿物中提取稀土的工艺问题。并在龙南县工业局采用江西冶金研究所提供的工艺在足洞地区建立土法生产矿点,开始了对离子型矿物的开采提取利用。

1975年3~12月,江西有色冶金研究所和江西909地质队合作,在寻乌河岭完成年产稀土氧化物50吨的半工业试验。这是在国内首次用(NH4)2SO4浸矿成功,而且浸出液直接以P204萃取稀土并进行分组,从而使以轻稀土为主的寻乌稀土在国内外打开市场。

1981年,江西有色冶金研究所在赣县大埠稀土矿进行(NH4)2SO4浸矿工业试验获得成功。1985年,由赣州有色冶金研究所和江西大学共同完成了“离子吸附型稀土矿稀土提取新工艺”(即硫酸铵浸取-碳铵沉淀工艺),使稀土提取成本大大降低,被广泛应用于离子吸附型稀土矿的工业提取。

为了保护生态植被,赣州有色冶金研究所于1983年提出"就地浸取"开采离子型稀土矿工艺。1988年12月完成《离子型稀土矿就地浸取工艺研究》现场小试。1995年12月,全面完成《离子型稀土原地浸矿新工艺研究》国家“八五”攻关任务。其成果在龙南类型稀土矿山全面推广。新工艺应用面达到15%。

目前江西南方稀土高技术股份有限公司承担了《离子型稀土原地浸矿及直接萃取分离技术》国家重点项目,正在寻乌实施,将于2003年建成为国内一流的原地浸矿和从浸出液直接萃取富集和分离稀土的示范工程。

(三)四川氟碳铈矿的冶炼

四川省地勘局109地质队于20世纪80年代中期发现四川冕宁稀土矿,它属于氟碳铈矿单一矿体,磷钛等杂质少,是我国第二大稀土资源。1989年开始开采,1993年开始建设稀土冶炼厂,经过近十年的开发,已形成了一套针对四川矿特点的冶炼分离技术。

1、氧化焙烧-稀硫酸浸出-二次复盐沉淀法

20世纪60年代,北京有色金属研究总院研究了氧化焙烧-稀硫酸浸出工艺处理包头稀土精矿,发现铈几乎全部以四价状态进入浸出液,经过复盐沉淀可以提取纯铈。但由于包头矿中含有独居石,稀土无法全部分解浸出,导致稀土收率较低,所以该工艺不适宜处理包头混合型矿。而四川稀土矿与包头稀土矿相比,由于不含独居石,矿物组成单一,因此比较容易冶炼。1990年,包头稀土研究院进行了四川冕宁氟碳铈矿精矿氧化焙烧、稀硫酸浸出、复盐沉淀提取铈的研究,氧化铈的纯度大于99%,收率78%。该工艺于1992年转让给四川稀土材料厂。之后,经过多年生产实践,对该工艺进行了许多改进,氧化铈的纯度和稀土收率有较大提高,目前四川百分之七十左右的稀土冶炼厂采用该工艺生产。该工艺的特点是设备简单,建厂投资少,对化工原料要求不高,但不足的是工艺流程长,化工原料消耗大,“三废”排放量大,稀土回收率偏低,产品纯度较差。

2、氧化焙烧-盐酸浸出工艺

该工艺是美国钼公司20世纪60年代开发的,浸出时四价铈留在渣中得到铈富集物(铈含量大于90%),可作为抛光粉的原料,也可作为提纯高纯铈的原料,其它三价稀土进入盐酸溶液,然后经过萃取分离。该工艺减去了两次复盐分离工序,大幅度缩短了工艺流程,降低了化工原料的消耗、"三废"的排放和生产成本,铈收率可提高5%以上。不足的是稳定生产2N的铈产品有一定的难度,并含有一定的放射性元素钍。

以上两种工艺虽然目前广泛应用于四川矿的冶炼,但还存在许多不足之处,并不是很满意的工艺,因此国内许多研究者一直在努力开发新工艺,希望用简单连续的萃取法工艺代替化学法工艺,因为四价铈与三价稀土分离系数非常大,因此直接萃取分离很容易得到高纯铈,萃余液再经过萃取分离其它三价稀土,但由于溶液中含有大量的氟、钍等杂质,在萃取过程中易产生乳化,影响萃取过程的顺利进行。目前国内已开发出直接萃取分离工艺流程,但都还未真正用于工业生产中。

三、稀土的分离与提纯

我国稀土科技工作者从20世纪50年代开始对溶剂萃取法分离稀土元素进行了大量的研究开发,取得了许多科研成果,并广泛应用于稀土工业生产。如1970年成功地在工业上采用N263萃取分离出纯度为99.99%的氧化钇,取代了离子交换法分离氧化钇工艺,成本不到离子交换法的十分之一;1970年采用P204萃取代替了经典的重结晶法制取轻稀土氧化物;用甲基二甲庚脂(P350)萃取取代了经典的分级结晶法制取氧化镧;20世纪70年代首先将氨化P507萃取分离稀土和用环烷酸萃取钇的工艺用于我国的稀土湿法冶金工业;萃取技术在我国稀土工业中的迅速发展是与中国科学院上海有机化学研究所袁承业等同志的辛勤劳动分不开的,他们研究成功的各种萃取剂(如P204、P350、P507等)均在工业中得到广泛的应用;北京大学徐光宪教授在20世纪70年代提出和推广的串级萃取理论,对我国的萃取分离技术起到了指导作用。同时提出了用串级萃取理论设计优化的分离工艺,并广泛应用在稀土萃取分离工业中。

40多年来,我国在稀土分离提纯领域取得了许多世人属目的成就。

20世纪60年代,北京有色金属研究总院研究成功锌粉还原碱度法生产高纯氧化铕工艺,为我国第一次生产出大于99.99%的产品,该法至今仍为全国各稀土工厂所沿用;上海跃龙化工厂和复旦大学、北京有色研究总院合作先使用萃取-离子交换流程,用P204富集N263萃取提纯制备得到99.95%纯度的氧化钇,1970年采用P204富集N263二次萃取提纯得到纯度大于99.99%的氧化钇。

1967~1968年,江西801厂实验厂与北京有色金属研究院合作研究成功采用P204萃取分组-N263萃取提取氧化钇的工艺流程,并于1968年12月建成3吨/年的氧化钇生产车间,氧化钇纯度为99%。

1972年由北京有色金属研究总院、江西806厂、江西有色冶金研究所、长沙有色冶金设计院等4家组成攻关组,在北京有色金属研究总院经过二年联合攻关试验,研究成功用环烷酸作萃取剂,以混合醇作稀释剂提取氧化钇的工艺流程。

1974年长春应用化学研究所首次发现当用环烷酸萃取分离稀土时,钇的位置在镧的前面,是稀土中最不易被萃取的元素,于是提出了从硝酸体系中用环烷酸萃取分离氧化钇的技术。与此同时,北京有色金属研究总院开展了用环烷酸从盐酸体系中分离氧化钇的研究,并于1975年分别在南昌603厂和九江806厂进行扩大试验,原料为龙南混合稀土氧化物。1974年上海跃龙化工厂、复旦大学和北京有色金属研究总院共同协作,又研究了从独居石、褐钇钶矿的混合稀土中采用P204萃取分组后的重稀土为原料,用环烷酸萃取分离氧化钇。三条战线开展了友谊竞赛,大家互通情报,取长补短,终于研究成功了具有我国特色的环烷酸萃取分离99.99%氧化钇工艺。

1974~1975年,南昌603厂与长春应用化学研究所、北京有色金属研究总院、江西有色冶金研究所等单位合作研究成功第三代氧化钇提取流程-环烷酸一步法萃取提取高纯氧化钇工艺,并于1976年投产。

1976年在包头召开的第一次全国稀土萃取会议上,徐光宪先生提出了串级萃取理论。1977年在上海跃龙化工厂举办了“全国稀土萃取串级理论与实践讨论会”,对该理论作了系统和全面的介绍。随后,串级萃取理论被广泛应用于稀土萃取分离提纯的研究和生产。

1976年北京有色金属研究总院用包头矿混合稀土提取铈后的富集物采用N263萃取法分离镧镨钕,一次萃取分离中流出三个产品,氧化镧、氧化镨、氧化釹纯度均在90%左右。

1979~1983年,包头稀土研究院、北京有色金属研究总院等研究开发了以包头稀土矿为原料,采用P507-盐酸体系稀土全萃取分离工艺,得到镧、铈、镨、钕、钐、钆六种单一稀土产品(纯度99%~99.95%)和铕、铽富集物产品,工艺流程短,过程连续,产品纯度高。


稀土供应商:中钨在线科技有限公司
产品详情查阅:http://www.chinatungsten.com
订购电话:0592-5129696 传真:0592-5129797
电子邮件:sales@chinatungsten.com
钨新闻、价格手机网站,3G版:http://3g.chinatungsten.com
钨新闻、价格手机网站,WML版:http://m.chinatungsten.com

 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。

金属钨制品

金属钨制品图片

高比重钨合金

高比重钨合金图片

硬质合金

硬质合金图片

钨粉/碳化钨粉

钨粉图片

钨铜合金

钨铜合金图片

钨化学品/氧化钨

氧化钨图片