三氧化钨电致变色与气敏性应用2/2

三氧化钨作为电致变色显示材料(EC display)。早期EC显示的电子钟和电子表,其使用寿命与循环次数为主要的缺陷,通过采用三氧化钨作为电致变色显示材料可制备出循环次数可达到5百万次,刷新时间为一秒以内的显示器件,虽然氧化钨作为电致变色显示材料存在不能快速刷新的问题,但是三氧化钨变色材料在仍在EC显示上获得应用。
 
气敏传感器
三氧化钨作为一种金属氧化钨半导体气敏材料而受广泛应用,氮氧化物与硫化氢气体是主要的大气污染物,三氧化钨在探测这些大气污染物呈现出良好的气敏特性。气敏材料之所以能实现对气体的检测,主要的原理为被探测的气体会与三氧化钨表面发生接触时,会在三氧化钨表面发生吸附与脱吸附反应,材料的电阻率发生改变,通过检测材料的电阻值就能实现对被探测气体的检测。
如果增大气敏材料与被探测气体的有效接触面积不仅能得到更高的灵敏度,而且更大的接触面积具有更好的散热,能减少工作温度的变化,避免工作温度变化过大影响气敏材料的灵敏度。通过减少气敏材料的晶粒尺寸,使晶粒纳米化是增大气敏材料的有效工作面积的主要方式之一,而纳米级的三氧化钨具有非常高的灵敏度,甚至在低温情况下也具有较好的灵敏度。同时研究者们也相继发现了三氧化钨对多种气体,如臭氧与有机物挥发性气体都具有良好的气敏特性。
微信:
微博:

 

三氧化钨电致变色与气敏性应用1/2

三氧化钨电致变色应用三氧化钨是一种金属氧化物半导体材料,也是一种特殊的功能材料,经研究发现其因为其晶体结构的多样性使三氧化钨具有电致变色、气致变色、光致变色、光学催化剂、气敏材料等性能。本文将结合一些实例来说明三氧化钨电致变色与气敏性在生活中的应用。
三氧化钨电致变色应用
三氧化钨的电致变色性能,可在航天领域中作为航天器的热涂层材料。三氧化钨电致变色器件可通过改变外加电场的电压方向改变离子的抽出与注入情况,器件中电致变色层的颜色也会相应发生改变,从而改变器件对光的反射率(透射率)。航天器中如果采用三氧化钨电致变色器件作为热涂层材料,能通过改变外加电场,控制热涂层对红外光线的反射率,从而控制装置内的温度。这种技术依靠的是运用材料自身的特性来调节涂层对红外光线的反射率的大小,不需要很复发的电气控制或者机械传统部分,能使航天器的控温系统具有轻质量、低能耗、可靠性高等特点。对于航天器上部分热敏感器件可以采用直接覆盖电致变色膜的方式来对其热量实现更好的控制。三氧化钨电致变色能通过对外加电场的改变来调节其对红外光的反射率,同样的道理,三氧化钨还能制成红外隐身涂层材料,实现飞机的红外隐身。
微信:
微博:

 

纳米钨铜合金电极的研究

钨粉和铜粉的粉末粒度以及均匀性在一定程度上会影响钨铜合金电极的烧结效果,粉末粒度的减小会使得材料的各项综合性能,如密度、硬度、导电导热性得到极大的改善。传统意义上的粉末冶金方法(Powder  Metallurgy, PM),其采用金属粉末(或金属氧化物粉末)作为原料经压制烧结工艺所得到的复合材料的粉末粒度大多较粗。而相比之下,纳米钨铜材料具有较高的表面能,在烧结的过程中原子的运动以高界面能为驱动力,使得界面中一些微小的孔隙发生进一步收缩,防止了孔隙的扩散。因此对纳米钨铜合金的研究有利于实现较低温度下烧结致密化的进行。

虽然纳米钨铜合金的制备工艺大体上看起来与传统粉末冶金工艺相类似,也是分为制粉备料-压制成型-烧结三个工艺流程,但是纳米颗粒所具有的特殊性也使得纳米钨铜合金的制备与传统方法间存在一定的区别。总的来说,目前较为常见且应用较多的纳米钨铜合金制备方法研究有溶胶-凝胶法(Sol-Gel)、机械合金化(Metal Alloying, MA)、机械-热化学工艺合成以及雾化干燥等。

机械合金化(Metal Alloying, MA)是采用高能球磨机,将一定配比的钨铜混合粉末球磨较长的一段时间,可得到粒度接近于20nm-30nm颗粒度的纳米粉末。再将制备好的纳米粉末压制生坯,在氢气H2的氛围下烧结一段时间,便可得到具有较高相对密度的纳米钨铜合金。

所谓的溶胶-凝胶法(Sol-Gel)是采用含高化学组分的化合物作为前躯体,在液相下将这些原料均匀混合、水解、缩合等反应,在溶液中形成稳定的透明溶胶体系溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。在目前的学术领域,已有研究人员通过此方法成功制备了高性能的钼铜和钨铜粉末,但是这种方法也存在一定的缺陷,如在氢气还原的过程中难以控制杂质和水蒸气的含量,而这些问题的存在将给后续的烧结工艺带来一定的影响。

钨铜合金电极

微信:
微博:

 

APT结晶与粒度控制

APT工艺的现代方法是使用高纯APT取代钨酸,借助于钨酸铵溶液的热不稳定性,溶剂中氨易于气化的特点,用快速加热、剧烈搅拌的方法,使溶剂与溶质间的平衡发生破坏,呈过饱和状态,APT从钨酸铵溶液中经成核,晶体生长而结晶出来。与钨酸和酸沉APT相比晶体生长向固体化合物的转移过程要慢得多,但晶体无夹杂和很少吸附杂质且结晶易于过滤洗涤,产品纯度高。

目前,国内外APT的生产多采用沸腾蒸发,国外多倾向于采用强制循环蒸发结晶,也有采用大槽罐生产粗晶APT的,但粒度分布广,大小不一,复晶较多。
 
本文叙述的方法是在小罐体中进行试生产,APT粒度均匀粒度粗,如适当增加罐体体积,在国内常用的(2-3m3)搪瓷罐体中,按上述控制方法可生产45-50μm的粗颗粒APT。
 
众所周知,每一种晶体都在一定的温度和压力范围内稳定,有一定的蒸汽压和溶解度,人为设法增强溶质在溶剂中的自由能强化液体分子间的扩散与对流作用,使溶质与溶剂间的相平衡发生破坏,呈过饱和状态,并迅速加入溶质的细晶源,即晶体诱发成核,大量瞬间形成的晶核,在结晶过程中随时间的推移,游离氨的气化,介隐区的形成而慢慢长大。为保持晶体均匀长大,适当控制溶剂的蒸发量或按一定流速补加钨酸铵溶液,长时间维持晶体长大的介隐区,这样结晶出的APT粒度均匀,颗粒度大。并可按工艺要求选择罐体参数、控制溶液的蒸发速度、补加溶液速度和加量、晶体加入量和加入条件等工艺参数来生产不同粒度的APT。在1m3搪瓷反应罐中,WO3含量为280-350g/L的ATP溶液,晶种加量1.2%,补加溶液速度0.3L/min,所得APT粒度可由20μm上升到44μm,假比重由2.2上升到2.72g/cm3.APT典型筛分析,粒度分布举例如表所示。

APT筛分析粒度分布举例
微信:
微博:

溅射镀膜法制备氧化钨薄膜4/4

磁控镀膜示意图磁控溅射法能有效地解决上述的问题,磁控溅射是溅射技术中的新成就之一。前面所介绍的三种溅射法中,都存在淀积速率低的缺点,尤其是直流溅射,在放电过程中只有少部分的气体分子被电离。为了在低气压环境下进行高速溅射,必须增大被电离气体的比例。磁控溅射法中引入正交电磁场,使被电离气体的比例增加,提高溅射速率。磁控溅射法一般是在直流溅射或者射频溅射基础进行改造,在靶阴极内侧安装磁铁,磁铁磁场的方向垂直于阴极磁场方向。磁控溅射法的原理为以磁铁磁场来改变电子运动的方向,延长和束缚电子运动轨迹,提高被电离气体的比例,充分利用电子的能量,使数量相同的离子去轰击靶材料时,靶材料的溅射原子的量更多,即溅射效率更高,而且因为电子受正交电磁场的束缚,能量要耗尽时才能沉积在基片上。磁控溅射法相比其他三种溅射法具有沉积速率快,基片工作温度小两大特点。制备氧化钨薄膜时,在反应溅射镀膜法的基础上结合磁控溅射法,可以大大提高氧化钨薄膜的制备效率。
 
上述的四种为最常见的溅射方法,还有一些适用于特殊场合比较不常见的溅射方法,如离子束溅射、三极溅射、偏压溅射等。而这四种溅射方式也经常被结合起来一起使用,如直流(射频)反应溅射,直流(射频)磁控溅射,直流(射频)磁控反应溅射等,综合了各自的优点和特长。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜3/4

溅射镀膜法可分为直流溅射、射频溅射、反应溅射以及磁控溅射四种比较常见的方式。
 
直流溅射法,是最为简单的溅射方法,预镀材料为阳极、基片为阴极,通入氩气后在两极之间加入高压直流电,氩离子在高压电场作用下获得动能轰击靶材料,靶材产生溅射,沉积与基片表面性能薄膜。直流溅射溅射镀膜原理图法的结构简单而且容易获得大面积薄膜,但是直流溅射法所选的靶材料只能为金属或者低电阻率的非金属,而且基片的工作问题过高,薄膜的沉积时间长。
 
射频溅射法,在直流溅射的基础上将直流高压电改为交流电压,与直流溅射法相比射频溅射法具有一个突出的优点,可以溅射包括绝缘体、半导体、导体在内的任何材料。
 
反应溅射,在直流溅射与射频溅射的基础上,通入反应气体,如氧气、水、氨气等混合一定比例的氩气,溅射出的原子与反应气体发生化学反应生成化合物,沉积氧化物、碳化钨、硫化物等各种化合物薄膜,氧化钨薄膜的制备就是采用氧气作为反应气体、钨为靶材。以上三种溅射方式虽然理论上已经能制备出多种种类的薄膜如金属、非金属、导体与非导体、化合物薄膜,但是这三种方法仍存在制备时基片的温度过高,薄膜沉积的时间长和辐射损伤大等缺点。
微信:
微博:

 

溅射镀膜法制备氧化钨薄膜2/4

采用溅射镀膜法制备氧化钨薄膜时,在设备中通入氩和氧的混合气体,靶材料为金属钨,氩离子在电场的作用下,获得动能去轰击金属钨,靶材料表面溅射出金属钨原子,钨原子与氧气发生反应变为氧化钨并且沉积在基片表面,形成氧化钨薄膜。

溅射镀膜示意图

 
溅射的机理。根据动能转移理论认为离子必须要拥有一定的动能,即一定的速度去碰撞靶材料,才能使其表面溅射出原子。碰撞时,离子将动能传递给被碰撞的原子,只有当动能的能量大于靶材原子之间的结合能,原子才能从靶材表面溅射出来。简单的理解这就好比生活中拿着石镐去敲击石头,只有当你力气达到一定的程度才能从石头表面敲下小石子,石镐即为离子,石头为靶材、小石子为溅射出的原子。经过理论分析得出以下几点:(1)原子溅射率会随离子动能增加而提高,但当动能增加到一定的程度时,溅射率反而会减少;(2)当离子动能低某一个数值时,靶材表面将不再发生溅射;(3)发生溅射是具有方向性的,溅射方向会根据离子的入射方向改变而变化;(4)如果采用质量小的电子来替代离子轰击靶材料,即使具有极高的动能,也不会发生溅射现象。
微信:
微博:

 

 

溅射镀膜法制备氧化钨薄膜1/4

氧化钨薄膜具电致变色、气致变色、热至变色、光致变色光催化剂性能,因此应用于多领域之中,前景十分宽阔。氧化钨薄膜的前景十分可观,制备方式也受到许都学者的关注,目前比较常用的制备氧化钨薄膜的方式有,溅射镀膜法、蒸发法、化学气相沉积法、溶胶-凝胶法,不同方式制备出的氧化钨薄膜在性能上会有所区别,制备方式的工艺难易程度也各不相同。

溅射工艺过程示意图

 
溅射镀膜法制备出的氧化钨薄膜均匀性较差、沉积速率较慢,容易把控氧化钨薄膜中的化学成分、对衬底的附着力较好,同时溅射镀膜法也因为容易控制工艺参数才工业上被广泛应用;蒸发法制备的氧化钨薄膜纯度较高、沉积速度快,早期受到较多的重视;化学气相沉积法具有低生产成本与高生产效率的特点,而且制备出的氧化钨薄膜能均匀地覆盖在复杂的表面;溶胶-凝胶法设备简单、操作简单、并且能制备出大面积氧化钨薄膜,由于无法长时间的保存使其该方法无法被应用于工业上大规模生产。溅射镀膜法相对来说比较适用于工业上大规模生产,本文主要介绍一下与溅射镀膜法相关的一些知识。
 
溅射镀膜法的原理。将靶材料与基片放于电场中,高能粒子通过电场加速后撞击在靶材上,高能粒子可以为电子、离子或者中性粒子,但一般会选择离子,因为离子在电场中容易获得动能,离子轰击到靶材料表面后经过一系列能量交换,原子或者分子从靶材料表面飞出,这个过程称为溅射,溅射出来的大部分为原子,可能有小部分为原子团。溅射出来的原子或者原子团沉淀到基片的表面,在其表面镀上一层薄膜,所以整个过程称为溅射镀膜法。
微信:
微博:

液膜法生产仲钨酸铵

钨在我国的储量居世界之首位,在我国冶金工业中占有重要地位。仲钨酸铵是生产金属钨的主要原料,目前工厂用萃取法或离子交换法生产,前者是将钨精矿用碱煮(或碱熔)后分部除去硅、磷、砷,加入Na2S使Mo成为MoS3沉淀,然后将清液调pH至2-3,用叔胺萃取。反萃用NH4OH。因此,澄清槽里会经过pH=6的阶段。这时APT会析出结晶从而导致难以正常操作。这一问题难从配方解决,因此有通过加强搅拌使结晶再溶解或改进澄清槽内部结构几何形状的做法。离子交换法虽然不需除P、As、Si但不能除去钼,因此往往选用含Mo量低至一定规格的钨精矿。此法虽可直接用碱性料液,但由于交换量小必须先将料液稀释至含WO3 25g/L以下,再加上淋洗用水量也大,因此pH10-13的碱性废水排放量非常大,废水处理成为一种负担,而且这两种方法的废水中的钨无法回收。
 
乳液型液膜的概念是N.N.Li在1968年提出的,它吸引了各国的研究者。由于它在迁移机理上模拟了生物膜的活性迁移,可使物质逆浓度差高度富集。它是将萃取和反萃取结合在一个体系里同时进行的过程,其反应是在极薄的表面积极大的液膜界面上进行,再加上在膜相加有载体,因此其动力学优势远胜于溶液本体中进行的反应,传质速率、效率以及选择性均胜于萃取过程。目前这一新技术正向单元操作发展,国际上首次开始工业应用的是奥地利格拉茨工业大学用于从废水回收锌,其次是华南理工大学环境科学研究所用于废水除酚。
 
目前乳化液膜的主要技术关键是膜的稳定性和破膜技术。对于膜的稳定性在液膜萃取和破膜阶段要求是不同的, 前者要求膜稳定性高而后者则希望稳定性低, 目前对液膜的稳定性和寿命还不易控制3 破膜技术与有机相的复用及回收内相有关, 它直接影响液膜法的经济效果, 不同配方的液膜破膜效果不一样, 因此破膜技术还需要进行试验研究。对于表面活性剂和载体的研究, 也直接影响着液膜的技术和经济效果。另外, 在工业废水处理中, 由于膜组分的溶解可能会造成二次污染, 这些问题都可在液膜的研究和发展中进一步解决。
 
用钨细泥或钨精矿碱熔后所得粗钨酸钠溶于水作为料液调pH至8~9除去杂质硅后,不需除去磷、砷、钼于室温下直接进行实验室一级间歇式液膜迁移,,按正交设计的最佳操作条件,5min 内在内水相直接得到仲钨酸铵(APT)结晶。提取率为99.85%,纯度达到一级品标准。文中对各种影响因素进行了深入研究,提出了一级连续逆流流程,成本低,是有前途的新方法。

APT
微信:
微博:

钨铜电极烧结机理与致密度的关系(三)

当温度进一步升高达到液相烧结温度时,液相铜开始生成,与此同时钨颗粒在毛细管力的牵引下发生颗粒重排。如前文图中所呈现的那样包裹在铜相内部的钨颗粒,相互接触重排以及收缩。这样一来,烧结后的粉体强度以及韧性都得到了有效的提升,其中的原因包括两个:其一,颗粒与颗粒之间连接强度因重排而显著增大,也就是化学中的原子间作用力的增大;另一方面,原本在坯体内部的颗粒接触面能达到原子引力作用范围的数量是有限的,而温度的进一步提升使得原子振幅增大或发生扩散,从而使得接触面上进入原子作用力范围的数量增加,形成较大的粘结面。随着粘结面不断扩大,烧结体的强度也逐渐上升,并最终形成烧结颈,完成颗粒界面向晶界的的转变。

此外,孔隙形状的改变以及孔隙总数和体积的改变也是烧结强度增大的表现。下图为球形颗粒模型,其所表示的是孔隙形状的变化情况。由于烧结颈的不断长大,孔隙不断收缩呈闭孔后圆化。而在这期间变化的不仅仅是孔隙的形状和性质,其总数和大小也在不断地发生着改变。总的来说,孔隙的数量由于不断收缩聚拢呈下降趋势,而平均孔隙的大小有些许提升,小孔隙先于大孔隙缩小而消失。

钨铜合金电极

烧结体体积的收缩的主要原因并不是粘结面的形成,这样一来,致密化就并不标志着烧结过程的开始,而只有烧结体的强度增大才是烧结发生的明显标志。按照时间的推移来划分,钨铜合金粉末烧结过程还可分为几个阶段(界限不绝对):

1.粘结:烧结前期,颗粒接触界面向晶界转变,烧结颈在这一阶段形成并长大。颗粒内的晶粒不发生变化,颗粒外形也基本不会发生变化,整个烧结体不收缩,密度增加也极小,但是烧结体的强度和导电性由于颗粒结合面增大而有明显增加;

2.烧结颈长大:原子向颗粒结合面的大量迁移导致烧结颈的扩大,颗粒间距离缩短,形成连续的孔隙网络。此外,由于晶粒长大,晶界越过孔隙移动,被晶界扫过的地方,孔隙大量消失,烧结体的体积收缩、密度和强度增加是这个阶段最为主要的特征;

3.闭孔隙球化和缩小:在烧结后期,烧结体相对密度较高,多数孔隙被完全分割,闭孔数量大大增加,孔隙形状趋近于球形并不断缩小。在这个阶段,整个烧结体仍可缓慢收缩,但主要是通过小孔隙的消失以及孔隙数量的减少来实现的。该阶段的延续时间较长,但是仍会残留少量的隔离小孔无法消除。

微信:
微博:

钨合金压舱配重块Ⅱ

钨合金之所以能成为船舶压舱配重的首选材料,主要由于它自身携有的诸多优点。
 
1、高密度:钨合金的密度高达18.5 g/cm3,比铅合金的密度高了65%。现今铅由于其自身存在的缺陷已逐渐淡出人们的视野,钢、铁等材料的密度又低于钨合金,因此钨合金则很好地接替了这一位置成为了应用于各个配重领域的首选材料。
 
2、良好的耐磨损、耐腐蚀性:众所周知钨的密度很高、比重大,即便在很高的温度或者很强的冲击力度下依然保持不形变,适合于长期浸泡在海水中,因此也特别适合用于船舶的压舱配重。
 
3、环保无污染:由于使用铅材料制作压舱配重、或者海水压舱水等均会对环境造成污染和侵害,而钨合金是一种绿色环保金属材料,它在使用和生产加工过程中均不会产生有毒物质。由此可见,钨合金是最适宜用来压舱的配重块。
 
除了以上几个优点之外,钨合金还有一系列优异的物理力学性能、具有良好的机加工、可焊接特性、而且能适应动态或静态安装。不仅适用于船舶的压舱配重,也可以应用于各种仪表及发动机上的平衡配重元件。如“斯贝”发动机上用的配重元件以及在高速运转下控制分油门可调节油量的配重元件等等。
钨合金压舱配重块
微信:
微博:

 

 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。

金属钨制品

金属钨制品图片

高比重钨合金

高比重钨合金图片

硬质合金

硬质合金图片

钨粉/碳化钨粉

钨粉图片

钨铜合金

钨铜合金图片

钨化学品/氧化钨

氧化钨图片