APT 的生产(2)

溶剂萃取法也是一种先进的钨冶炼方法,是国外60年代就已经发展起来的工艺,而我国则起步于70年代,80年代形成生产能力。萃取工艺有金属回收率高、除杂效果好、产品纯度高、质量易于保障、对精矿适应性强等优点。但此工艺一次性投资较多,且技术上有一定难度。目前我国用萃取法生产APT的主要厂家有株洲硬质合金厂、自贡硬质合金厂、广州红心化工厂等。
 
国外APT主要生产国为美、俄、韩、德、瑞典等国家。美国是西方第一生产大国,其生产能力1. 8万t/ a。90年代以来,受到中国廉价APT的冲击及国际钨市场价格暴跌的影响,美国APT生产开工率很低。1996 年俄罗斯和西方发达市场经济国家APT生产量分别为4 000 t 和4 350 t ,1997年略有增加。
微信:
微博:

APT 的生产(1)

80年代中期以来,由于国际钨市场贸易结构的变化,钨原料贸易由钨精矿转为以APT为主的钨酸盐贸易,刺激我国APT生产发展很快。据统计,1985年我国APT生产厂家仅有17家,产能1. 5万t ,产量0. 6万t。1987年发展到54家,其中有色行业15家,冶金行业19家,化工行业7家,其他行业及地方企业13家,产能2. 9万t。年生产能力1 000 t 以上有8家,产量2万t 左右。改革开放以来,在发展社会主义市场经济中,APT生产以它的特殊的资源优势、产业优势和市场优势备受青睐。大家争着上,挤着上,兴起了一股“APT热”,用“雨后春笋”、“遍地开花”来形容其近10年的发展势头一点也不为过。到目前为止,全国生产APT的钨冶炼加工厂170多家,以APT为主的钨酸盐生产能力高达6. 5万t ,APT产量3. 5万多t。其中年生产能力1 000 t 以上的有20多家,大部分是100~500 t 的小厂。一些矿山的冶炼厂生产能力也迅速扩大。
 
我国APT生产不但产能、产量迅猛增长, 而且生产工艺技术也取得了长足的进展。过去生产APT以传统的沉淀法为主,现在已彻底改变了只有经典工艺或以经典工艺为主的局面, 较普遍地应用新发展起来的离子交换法和溶剂萃取法。离子交换法是我国80 年代发展起来的新的钨冶炼技术。该法的优点是工艺流程短, 设备简单, 占地面积小, 劳动条件好, 稳定, 投资少。目前我国用离子交换法生产APT的最大厂家是厦门钨业股份有限公司, 该公司前身厦门钨品厂, 1982 年建成一条年产300 t APT的生产线。十几年来, 企业获得了迅速发展, 现在APT综合产能1 万t/ a , 成为世界上规模最大的钨冶炼加工企业。该企业强化管理, 注
重产品质量, 减少能源及原材料消耗, 金属回收率达96 %以上, 各项经济技术指标居世界领先水平, 在激烈的市场竞争中取得了优势, 我国出口的APT商品中该公司占了40 %。
微信:
微博:

 

钨铜合金电极致密化过程所存在的问题(三)

此外,采用成分补偿法可对成分偏析进行修正,但是稳定性难以得到保证。目前的研究表明通过改善粉末活性状态,如选择超细粉末和高贮能状态粉末,可以在较低温的条件下获得快速致密化过程,可使铜稳定溢出且量大大减少,尺寸精度也得到明显的提高。若能在固相状态下进行烧结,对成分控制是最为有利的,这是由于液相烧结,尤其是对于高体积分数的液相烧结来说,变形及尺寸控制就变得相当困难。一般情况下,生坯密度分布均匀性有利于变形控制,高生坯密度的烧结收缩和变形减小。

3.尺寸分布

有关液相烧结尺寸控制关系的研究表明:液相烧结坯的宏观变形与微观结构某些可测量参数有内在的联系,如溶解度、接触角、晶粒尺寸、配位数以及固体的体积分数。其中,钨铜W-Cu系统具有低互溶性和高二面角。有相关学者经过计算表明,期三维晶粒邻接度大于3时可避免坍塌,且抵抗变形的临界固体体积分数为0.2。显而易见的是对于结构复杂的零部件来说,仅仅要求不发生变形是不够的,其还需要对尺寸精度范围有一定的要求。与成分控制相似,在较低温度条件下获得高致密化速度和程度,尺寸控制精度可明显提高,而在固相烧结状态下对尺寸的控制是相对有利的。

更多钨铜合金电极致密化过程所存在的问题,请参考以下链接:

http://news.chinatungsten.com/cn/tungsten-information/80928-ti-10428 
http://news.chinatungsten.com/cn/tungsten-information/80960-ti-10432

微信:
微博:

钨铜合金电极致密化过程所存在的问题(二)

在常规熔渗、烧结条件下钨和铜两种金属之间是互不相溶且浸润性很低,这也就使得两种粉末致密化过程受到了一定的阻碍,使得其难以达到较高的致密化程度和所期望的组织结构。而仅仅靠提高压力和烧结温度,虽然在一定程度上能够提高产品最终密度,但是在工艺条件和综合性能保证方面带来了不少的问题,总的来说有以下几个方面:

2.成分分布

钨铜系在熔渗烧结时,成分控制精确度不高,尽管采用精确渗铜计算,实际的成分偏差依然很大。而在高温液相烧结过程中,液相铜的下坠和溢出会在一定程度上 引起成分偏移,同时也给复杂形状部件的表面加工带来了较大的困难。通常来说,液相烧结的收缩率高达15%-20%,变形及尺寸精度控制的难度远远大于固相烧结。这对直接制造复杂形状部件,尤其是采用粉末注射成型技术(Powder Injection Molding, PIM)带来了一定的困难。因此,在实际致密化的同时,应确保成分及尺寸得到有效的控制,以便于直接利用PM和PIM技术制造复杂形状的部件。

钨铜合金电极

微信:
微博:

 

仲钨酸铵的生产与市场总述

论述了我国仲钨酸铵(APT) 生产发展状况和生产工艺技术的进步,分析了国内外APT市场形势。提出在当前市场竞争日趋激烈的形势下,应从改革体制入手,加强行业总量、规模、产业结构、外贸出口的宏观调控和行业自律。
 
APT是钨的初级制品,是制造钨制品、硬质合金的重要原料,是我国重要的出口商品之一,也是国际钨市场的主要贸易商品。我国有优质的黑钨精矿为原料,采用先进的冶炼生产工艺,生产的APT杂质含量低,纯度高,物理性能和加工性能好,质量在国际上处于领先地位,在国际市场上享有较高的声誉,畅销日本、美国、西欧等国家和地区。美国等发达国家的一些用户免检购得我国的APT直接用于生产钨粉和碳化钨粉,深受外商的青睐。
微信:
微博:

 

仲钨酸铵的制备及研究

随着对仲钨酸铵制取的钨产品要求的提高,仲钨酸铵的生产工艺相应要求改进。生产仲钨酸铵的有中和法、蒸发法、离子交换法与萃取法,目前工业生产上较多应用蒸发法。但用蒸发法制备5水仲钨酸铵时,因为溶液内部的温度差,很易产生7 水仲钨酸铵和5 水仲钨酸铵的混合物。并且控制产品的粒度有一定难度,使产品粒度分布不均。另外,7 水仲钨酸铵热稳定性不好,工业应用较少。5 水仲钨酸铵热稳定性好,能制备性能较好的最终钨产品,因此很受工业生产的欢迎。为此本文研究了在蒸发过程中添加晶种和钨酸铵溶液,制备 5 水仲钨酸铵结晶,对其进行了 X 射线衍射分析与热分析,并探讨了添加晶种和钨酸铵溶液对仲钨酸铵结晶的影响及其结晶机制,且对结晶过程进行了动力学分析。
 
实验可知,应用蒸发法在晶核出现时添加晶种和钨酸铵溶液,可以制得纯度较高的5 水仲钨酸铵结晶,且结晶均匀、光滑,颗粒粗大。通过对仲钨酸铵结晶机制及动力学过程的研究,可以得知仲钨酸铵结晶过程中,晶核形成速度相对更快,而晶核长大较慢,由此可以证明添加晶种和钨酸铵溶液在理论上也是可行的。并了解了晶核形成和晶核长大这两个阶段都对晶体形貌有很大影响。
微信:
微博:

钨铜合金电极致密化过程所存在的问题

在常规熔渗、烧结条件下钨和铜两种金属之间是互不相溶且浸润性很低,这也就使得两种粉末致密化过程受到了一定的阻碍,使得其难以达到较高的致密化程度和所期望的组织结构。而仅仅靠提高压力和烧结温度,虽然在一定程度上能够提高产品最终密度,但是在工艺条件和综合性能保证方面带来了不少的问题,总的来说有以下几个方面:

1.致密化程度及速度

致密化问题实际上是致密化程度、速度以及条件所存在的问题。在实际的应用中,一般采用相对密度来表示其致密化程度,其普遍要求相对密度应大于98%。此外,寻求一种合理的致密化条件来提高致密化速度亦是研究的一个方向。就金属粉末烧结机理来说,要达到高致密化程度所需具备的基本条件:其一,固相可部分溶解在液相之中;其二,固相与液相接触角应为零;其三,单靠颗粒重排的液相不应超过烧结体积的35%。

对于钨铜合金电极中钨铜W-Cu体系在常规熔渗和烧结条件下,两相相互浸润性较差,钨在液相铜中几乎不溶解(10-5atm%,在1200℃下),在液相烧结致密化过程中无法发生溶解沉淀和颗粒圆化等物质迁移机制,仅依靠在也想作用下进行的颗粒重排左永。因此,致密化速度相对较为缓慢,致密化程度也相对较低。常规的熔渗烧结和简单的液相烧结无法满足98%相对密度的要求。

通过增加成型压力来提高生坯密度,可达到提高最终密度的目的,但仅在一定压力范围内有效且作用有限,不适当地提高压力已引起压坯分层和模具损耗等问题。另一种方法就是升高烧结温度直到1400-1500℃,密度可明显提高,但显然对烧结条件要求太过苛刻,并且在高温下尺寸变形严重,液相铜过分溢出使成分发生偏移。所以通过缩短粉末颗粒间物质输送距离来提高系统烧结活性,才是最有可能提高致密化程度和速度以及简化致密化所需条件的最有效方法。

微信:
微博:

钨铜合金电极中纳米钨铜混合粉的制备方法(三)

与传统的粉末冶金的方法相比,钨铜合金电极纳米复合材料一般也有制粉、成型以及烧结的过程,但是由于纳米颗粒的特性使得其纳米钨铜电极复合材料中的钨铜混合粉的制备方法有着一定的不同之处。

4.机械-热化学工艺合成法(Mechano-Thermo-chemical Process)

以偏钨酸铵和硝酸铜为原料,制备混合溶液,然后将混合溶液采用喷雾干燥,通过旋转雾化和其后的干燥工艺得到金属盐混合粉末的前驱体,将前驱体燃烧,形成钨铜W-Cu氧化物复合粉末,再将氧化物粉末球磨并采用二步氢还原,从而制备出纳米钨铜复合粉末。

5.雾化干燥-氢还原法

首先是将偏钨酸铵和硝酸铜按比例溶于蒸馏水中配置成混合溶液,然后将该溶液经过雾化干燥制备出钨铜W-Cu前驱体粉末,将前驱体粉放入箱式炉中进行焙烧得到钨铜W-Cu氧化物粉,之后再将氧化物粉末在空气中进行球磨,并最终在氢气气氛中进行还原,从而得到钨铜W-Cu纳米复合粉末。采用该工艺制备的钨铜电极纳米钨铜粉末混合均匀,但是其工艺较为复杂,制得的纳米粒子粒径也偏大。

钨铜合金电极
















 

更多钨铜合金电极中纳米钨铜混合粉的制备方法相关内容请参考以下链接:

http://news.chinatungste n.com/cn/tungsten-information/80906-ti-10417
http://news.chinatungsten.com/cn/tungsten-information/80907-ti-10418

微信:
微博:

仲钨酸铵生产过程中的钨锡分离研究现状

我国钨资源十分丰富,已探明储量为637.5万t(以WO3计),占世界总探明储量的一半以上,是我国具有优势的战略资源。我国钨产品的出口量直接影响着世界钨市场的价格和供需平衡,对国际钨市场影响明显。在钨冶炼中,锡是众多杂质中极为有害且较难深度除去的一种,钨成品中即使有微量锡存在,也会对其机械性能、物理性能等方面有着致命的危害。根据GB/T10116-1988要求,0级APT(仲钨酸铵)中,锡质量分数要小于1x10 -6,一级APT中锡质量分数要小于3x10 -6,但随着我国优质钨精矿的日益匮乏,可供开采的保有资源中锡等杂质的含量越来越高、形态越来越复杂,APT产品中锡超标问题越来越高、形态越来越复杂,APT产品中锡超标问题时而出现,对各钨厂的产品质量造成了较大影响。因而,研究以高锡钨精矿生产仲钨酸铵工艺中锡的行为及其去除工艺,便显得格外迫切和必要,它对于指导生产、调整工艺、保证产品质量都有着非常重要的作用。
 
迄今为止,人们对钨冶炼过程中除锡的研究还不太充分。我国是钨资源及钨冶炼大国,对于钨冶炼过程中除锡的技术研究也主要是在我国进行,国外对此很少有相关报道。前人的钨、锡分离方法主要有控制碱分解条件、在碱分解过程中加添加剂、沉淀法、控制离子交换工艺条件、萃取法等。
微信:
微博:

 

仲钨酸铵直接还原钨粉的制备工艺研究

钨是重要的稀有金属,它的高熔点(3380℃)、高密度(19.3g/cm3)、高硬度、低热膨胀系数,以及优异的抗蚀性能和高温强度,使其成为生产多种功能材料和结构材料的主要原料。
 
仲钨酸铵(ATP)是制备钨制品的重要原料。目前工业上生产钨粉的工艺主要是先将APT煅烧成黄钨或蓝钨,然后在氢气中进行还原制备钨粉。这种方法制备的钨粉为很规则的多晶形,粉状粒度大多控制在2-5μm之间,已成为在军工和民用等领域制备钨合金和制备WC的主要原料。但由于钨的显微硬度高、粉末呈多晶面形,使得粉末的成形性非常差,需要加入有机物作为粘结剂才能成形,这对大制品的冷等静压成形和控制合金性能非常不利。近年来,有报道由APT直接还原制备钨粉的工艺,这种方法制备的钨粉成形性较好,但未见详细的研究内容。笔者采用以APT直接氢气还原制备钨粉,并研究了还原温度和还原时间对钨粉形貌特征和粒度的影响,并探讨了形貌对粉末成形性能的影响。
微信:
微博:

 

四硫代钨酸铵

中文名称:四硫代钨酸铵
中文别名:硫代钨酸铵
英文名称:AMMONIUM TETRATHIOTUNGSTATE
英文别名:azane,bis(sulfanylidene)tungsten,sulfanide; Ammonium tetrathiotungstate;
CAS号:13862-78-7
分子式:H8N2S4W
分子量:348.17700
精确质量:347.90800
四硫代钨酸按
物化性质
相对密度:2.71 g/mL at 25℃(lit.)

制备方法
四硫代钨酸铵(NH4)2WS4的制备方法采用钨酸盐与硫化铵(NH4)2s溶液反应法制备而得。

步骤如下:

1)将钨酸铵(NH4)6W7O24.4H2O经氨水溶解,所用浓氨水的量为:浓氨水/偏钨酸铵=1~2/1(ml/g);
2)然后再与硫化铵(NH4)2s溶液反应,其两者的摩尔比为:S/W=4~6/1,反应温度为:室温~90℃,反应时间为:0.5~3小时,静止结晶时间为:8~24小时;
3)最后将结晶经过滤、水洗和无水乙醇洗涤,室温干燥即可得到目的产物四硫代钨酸铵(NH4)2WS4。

此制备方法可制得高纯度四硫代钨酸铵,其中,硫化铵用量接近生成四硫代钨酸铵所需的化学计量,反应条件缓和,反应时间大大缩短,废物排放少,产品收率高、纯度高,而且无需处理剧毒、恶臭的硫化氢气体。

微信:
微博:

 

 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。

金属钨制品

金属钨制品图片

高比重钨合金

高比重钨合金图片

硬质合金

硬质合金图片

钨粉/碳化钨粉

钨粉图片

钨铜合金

钨铜合金图片

钨化学品/氧化钨

氧化钨图片