复合稀土钨电极生产技术研究

钨电极

添加稀土元素在钨电极中,可以细化钨晶粒,改变钨电极的塑-脆转变温度,提高电极的性能。但是复合稀土电极生产技术较为复杂,且生产成本高,因此未能被广泛应用。通过改善复合电极的生产技术,对复合电极的工业化生产具有重要的意义。其中工艺技术包括掺杂工艺、还原工艺和垂熔烧结工艺。

钍钨电极的掺杂一般采用氧化钨和氧化钍直接掺杂。铈钨电极一般采用氧化钨和稀土硝酸盐进行掺杂。对于多元复合稀土钨电极通常采用APT与稀土硝酸盐直接进行掺杂,这种掺杂方法不仅高效,且省去了APT煅烧的工艺,缩短了生产过程。这两种原料均匀掺杂,可以提高复合电极的力学性能,使得电极具有较高的成材率和高电子发射性。

复合电极通常采用粉末冶金的方法制备。而这种制备工艺中,金属粉末的质量的电极的质量起着决定性作用。在还原过程工序中通常采用二次还原法,其中适当提高第一次还原的金属粉末的颗粒、加大第二次还原温度的梯度都有利于提高金属粉末的粒度。

烧结工艺主要影响电极的密度、晶粒度、稀土氧化物分布及高温蒸发的损耗量等。采用垂熔烧结方式制备复合稀土钨电极的过程中,要控制好烧结温度。因为烧结温度过高,钨晶粒就会急剧长大,降低稀土氧化物的扩散系数,增加电极的烧损率。且烧结温度过高,会使得稀土氧化物形成的低熔点物质聚集长大,增加偏析,导致稀土氧化物蒸发损耗,分布不均。

微信:
微博:

还原态铵钨青铜纳米粒子的制备方法(2/2)

针对现有技术存在的问题,这里提供了一种直接合成粒径可控铵钨青铜纳米粉体的合成方法。
 
还原态铵钨青铜纳米粒子的制备方法,其步骤如下:将0.01~1g有机钨源溶解于20~40ml有机酸溶液中,通过搅拌得到均匀溶液,然后加入4~30ml有机胺,混合至均匀,移至反应釜中,150~350°C晶化反应0.5~48小时, 反应后将粉体样品离心,洗涤,于40~250℃真空干燥1~12小时,即获得还原态铵钨青铜纳米粒子。
 
在溶剂热条件下,以有机长链高沸点酸为反应媒介,有机钨源和有机高沸点胺为原料,在非水环境下一步控制合成铵钨青铜纳米粒子。本方法的显著优势在于合成步骤简单,可产量化,获得粒子形貌均匀,结晶性好,粒径分布窄,大小在一定范围内可调, 化学价态为还原态,无需长时间高温过程和后续球磨过程,直接获得纳米粉体。本方法制备的样品为六角相铵钨青铜纳米晶体,尺寸在80~500nm 之间可以进行调控,形态均匀,粒径分布窄,化学价态为W6+和W5+混合存在,富含自由电子。本方法所制备的样品具有较强的近红外线吸收能力,含有纳米粒子的薄膜可以有效的屏蔽掉780~2500nm的近红外线并且保持对可见光的较高透过率。
 
实例:向100ml水热反应釜中加入36ml油酸和0.4 g WCl6粉末后,在室温下搅拌混合;待完全溶解后,再加入4 ml油胺,然后密封反应釜,于烘箱内200℃静置晶化24 h。冷却到室温后离心分离,依次用30 mL去离子水和30 mL无水乙醇交替洗涤三次,真空干燥后,获得铵钨青铜蓝色粉体,其为方块状铵钨青铜粒子,平均直径为80nm。

钨青铜可用于电致变色薄膜
微信:
微博:

 

氧化钨薄膜电极氧化葡萄糖制氢气

葡萄糖可以经过光合作用的化学方法,大量的合成普遍的存在与自然界中。由于葡萄糖的丰富存在,价格便宜,可再生且易得而被认为是产氢的主要的能源类物质。葡萄糖是农业,食品和造纸业的主要废弃物,如果处理不当也会造成严重的环境污染。近年来,有过许多PEC系统是通过葡萄糖产氢气。

近来,氧化钨和电催化剂串联从葡萄糖溶液制氢气表现出了较好的光催化活性。在光催化剂表面沉积高活性的电催化剂,可有效提高半导体的光催化活性。电催化剂在半导体表面的沉积形成一层覆盖物,通过改变体系中的电子分布,影响WO3的表面性质,进而改善光催化活性。一般来说WO3的费米能级高于当两种材料联结在一起时,电子就会不断从WO3向沉积电催化剂迁移,在金属和电催化剂界面上形成能俘获电子的浅势阱Schottk能垒,这为光生电子空穴对的分离提供了有效俘获阱,可以进一步抑制光生电子和空穴的复合,提高载流子的分离效率,最终提高光催化剂的量子效率。

将FTO/WO3/Ni(OH)2薄膜电极使用于还原葡萄糖的实验。通过该实验,发现不修饰Ni(OH)2的裸露得三氧化钨电极几乎没有光电催化葡萄糖的效果;在三氧化钨薄膜的表面修氢氧化亚镍后能够增强三氧化钨光电极薄膜的光电效应。以下为FTO/WO3与FTO/WO3/Ni(OH)2的拉曼光谱以及紫外可见光吸收曲线的对比图:

WO3氢氧化镍紫外光吸收曲线WO3氢氧化镍拉曼光谱

微信:
微博:

还原态铵钨青铜纳米粒子的制备方法(1/2)

钨青铜化合物是一类重要的无机化合物,此类化合物中钨离子以W6+、W5+和W4+等混合价态存在从而使化合物整体电荷平衡。丰富的晶体结构、隧道结构和这种特殊的价态使其具有优异的性能,如电子和离子导电性、超导性、光学性能等,其在二次电池、电致变色、近红外吸收和化学传感器等方面的应用引起广泛的研究兴趣。
 
目前,合成钨青铜类化合物主要依赖于湿化学法、热还原法和热分解法。湿法化学合成铵钨青铜主要是将起始原料在还原性溶剂中回流数天,此方法所得到的样品粒径过大,通常在几个到几十个微米之间,且制备过程时间长,能耗大。热还原法则是将氧化钨、金属钨粉末和金属钨酸盐按适当比例均匀混合,然后在惰性气氛或真空下加热,反应温度一般在1000°C左右,反应完成之后除去未反应的杂质。由于铵钨青铜的热稳定性差,分解温度 (300°C)低于合成温度,因此热还原法无法用于合成铵钨青铜。热分解法合成铵钨青铜是将仲钨酸铵在还原气氛(H2或H2和N2、Ar的混合气体等)下加热分解,除了所得样品粒径过大外,此方法还无法得到完全纯相的铵钨青铜,样品中铵含量过低以及易过度分解为氧化铵等缺点。截止目前的研究还无法直接获得纯相的铵钨青铜纳米粉体,因此通常将所得到的微米级大颗粒通过球磨的方式破碎成小粒子,但是此类化合物在球磨过程中既容易被氧化而失活又容易分解,同时还伴随着结晶性能下降等缺点,因此至今还没有办法一步直接获得纳米铵钨青铜粉体。
 
还原态铵钨青铜纳米粒子的制备方法,属于无机氧化物材料的制备领域。该方法在溶剂热条件下,以有机长链高沸点酸为反应媒介,有机钨源和有机高沸点胺为原料,在非水环境下一步控制合成铵钨青铜纳米粒子。

钨青铜可用于化学传感器
微信:
微博:

氧化钨薄膜电极的光学特性

下图为不同热处理温度下WO3薄膜的紫外-可见吸收光谱,其中前驱体溶胶pH=2.8,PEG含量为50%,热处理时间均为3h。从图中可以看出,所有样品的光吸收范围没有明显区别,均在470nm以下。随着热处理温度的上升,薄膜在300~450nm波长范围内的光吸收率有所增加。这主要是因为样品的结晶度随温度升高而升高,使得其光吸收效率提高。

WO3紫外光吸收曲线WO3紫外光吸收曲线

下图为不同柠檬酸添加量条件下的样品紫外-可见吸收光谱。与上图相比,所有样品的光吸收范围也均在470nm以下,与WO3理论禁带宽度2.7eV相吻合。随着柠檬酸添加量的增加,薄膜在300~450nm波长范围内的光吸收率有所增加,主要是薄膜表面颗粒尺寸和粗糙度增大的原因。大颗粒纳米晶粒的散射效应增加了光子在纳米晶粒薄膜中的传播路程,提高了薄膜吸收光子的概率,有利于提高光能吸收效率。

WO3紫外光吸收曲线

微信:
微博:
 

微信公众号

 

钨钼视频

2024年1月份赣州钨协预测均价与下半月各大型钨企长单报价。

 

钨钼音频

龙年首周钨价开门红。