钨青铜在陶瓷电容器上的应用

温度稳定性对应用于电子产品的多层陶瓷电容器的制备来说非常重要。通过两种或更多的具有相反介电常数温度系数(τ ε)的多元化合物混合,产生较小介电常数温度系数的固溶体,这种方法经常用来实现材料的温度稳定性;或者,例如对于BaTiO3基电容器, 掺杂剂混合分散于陶瓷体产生室温附近的铁电-顺电相转变,得到了相对稳定的材料。目前,BaTiO3基化合物满足X7R标准,其介电常数在-55℃〜125℃温度范围内相对于室温介电常数的变化率不超过±15%,在1MHz下的介电损耗tan σ小于0.02。但是如果不掺杂 PbTiO3(Tc = 495℃ ),它们的最高工作温度不超过130℃。
 
小型化的驱动和计算机的提速使更多的目光转向到耐高温部件,将来电容器必须能在150℃甚至200℃工作。然而,PbTiO3-BaTiO3复合多层陶瓷电容器的应用是不可取的, 一是1¾的毒性,二是在低氧分压容易分解,并且它还会和Ni基金属电极形成低熔点合金。 同样的问题也出现在Bi2O3掺杂的BiTiO3基固溶体中。理想的新材料要求其相变温度介于-50℃〜250℃,不含PbO和Bi2O3,包含相对常见的、便宜的原材料。
 
近来,国内外研究者发现一些钨青铜结构钽酸盐具有较高的介电常数(>100)、 低的介电损耗,有望成为温度稳定型介电材料而应用于多层陶瓷电容器,其中该系列陶瓷的介电常数ε r介于127〜175之间,IMHz下的介电损耗tan σ小于0.009,介电常数温度系数τ ε介于-7¾〜-2500ppm/℃之间。但目前这些钨青铜结构钽酸盐的介电常数温度系数偏大,介电常数偏低,因此限制了其实际应用。

陶瓷电容器
微信:
微博: