硬质合金-聚晶金刚石复合球齿

硬质合金球齿具有较高的硬度以及良好的抗冲击性能,在一些凿岩钻探等一些冲击回转作业中所用到的潜孔钻头中得到了广泛的运用。潜孔钻头依靠泥浆泵提供的冲击功,并以钻头端面的球齿对岩石进行破碎,钻孔的深度可达1000米以上,可实现深部复杂地层的破碎和钻进,因此其对于球齿的力学性能要求也更为严格,尤其是抗冲击性能。但是在一些坚硬研磨性岩层的钻探中,硬质合金球齿由于耐磨性不足容易过早发生磨损,导致失效。因此,在原有的硬质合金球齿的基体上添加镀层的方式也就应运而生。硬质合金-聚晶金刚石复合球齿就是其中的一种,其以硬质合金基体为衬底涂覆上聚晶金刚石涂层。硬质合金对聚晶金刚石起支撑作用,而聚晶金刚石具有高于硬质合金的硬度以及耐磨性,但是抗冲击性能较差,这也成为了相关研究人员的重点研究方向。

为了提高硬质合金-聚晶金刚石复合球齿的抗冲击韧性,国外的研究人员提出了功能梯度结构复合球齿,即在硬质合金基体和聚晶金刚石层之间施加一层碳化物的金刚石过渡层可以有效减小聚晶金刚石层与硬质合金衬底间的内应力;或是采用与聚晶金刚石热膨胀系数较为接近的硅或硅合金渗入到酸洗过的金刚石孔洞中,经实验表明聚晶金刚石的韧性以及抗断裂能力有了较为明显的提升。国外学者还尝试采用立方氮化硼作为硬质合金衬底与聚晶金刚石层间的过渡层,其体积比为1(立方氮化硼):4(聚晶金刚石)。立方氮化硼在高温下的热膨胀系数介于聚晶金刚石和硬质合金之间,这就有效地减小了二者间的热应力,并且这种良好的相容性也减小了热应力造成的微裂纹,极大地提高了复合球齿的抗冲击韧性。

国内的研究机构则通过减少合成聚晶金刚石的粘结剂含量,同时增大压力及增加烧结时间使得聚晶金刚石颗粒间D-D键的结合得到增加,从而提高硬质合金-聚晶金刚石复合球齿的抗冲击性。聚晶金刚石D-D键是化学键的结合,其结合强度远大于粘合剂的物理结合强度,D-D键的结合度越高则在钻探中复合球齿的抗冲击韧性越好。此外,在聚晶金刚石的烧结过程中加入镍基或钛基添加剂,其对聚晶金刚石颗粒有良好的润湿性,能在烧结过程中包覆在聚晶金刚石颗粒的周围,促使更多聚晶金刚石颗粒熔化而有利于更多D-D键的结合。美国学者设计了一种双层聚晶金刚石复合片,最外层采用较粗颗粒的聚晶金刚石,具有较高的抗冲击性;而内层采用较细颗粒的金刚石,有效地改善耐磨性。内层金刚石掺入钴Co作为烧结剂,外层粗颗粒金刚石含有少量或不含钴;烧结时,硬质合金内的金属钴通过扫越式扩展,经过内层细颗粒金刚石层到达外层粗颗粒金刚石层。由于有内层细颗粒金刚石层做衬底,在烧结时钴在外层金刚石层内均匀分布,从而避免了外层金刚石层因钴分布不均而导致的欠烧和软化。

硬质合金球齿

微信:
微博: